REF2018, Krakow

Differential cross sections for Z boson production in association with jets at CMS

Anastasia Grebenyuk on behalf of the CMS collaboration

Standard Model Production Cross Section Measurements:

Motivation

- ▶ With Z+jets we can probe different aspects of QCD calculations
- Z+jets precision measurement is crucial for deep understanding and modeling of QCD interactions
- Z+jets is dominant background for:
 - top quark measurements
 - ▶ Higgs physics -VH (H→bb)
 - searches of new particles
- Comparisons of data with predictions allows further Monte Carlo generator development and determination of systematic uncertainties.

Theoretical prediction for cross section for Z+jets

- ► MADGRAPH5_AMC@NLO + PYTHIA8 (denoted as LO MG5_aMC)
 - LO matrix element up to 4 partons
 - ▶ k_T -MLM merging between matrix element and parton shower
 - ▶ NNPDF3.0 LO PDF, CUETP8M1 Pythia8 tune

► MADGRAPH5_AMC@NLO + PYTHIA8 (denoted as NLO MG5_aMC)

- ▶ NLO matrix element up to 2 partons (LO accuracy for 3 partons)
- ▶ FxFx jet merging between matrix element and parton shower
- ▶ NNPDF3.0 NLO PDF, CUETP8M1 Pythia8 tune

► Z+1 jet fixed order NNLO

(Phys. Rev. D 94 (2016) 074015, Phys. Rev. Lett. 116 (2016) 152001)

- Correction for hadronization and multiple parton interaction computed with NLO MG5_aMC+ PYTHIA8 as differential scaling factors
- ► CT14 PDF
- ► Geneva 1.0-RC2 + Pythia8
 - NNLO+NNLL'
 - \blacktriangleright Use n-jettiness to separate N-jet and inclusive (N+1)-jet region, here τ_0 and τ_1
 - ▶ τ_0 (≡ beam-thrust) dependence resummed at NNLL'
 - ► $d\sigma_{\geq 0j}$ at NNLO, $d\sigma_{\geq 1j}$ at NLO, $d\sigma_{\geq 2j}$ at LO
 - ▶ PDF4LHC15 NNLO, CUETP8M1 Pythia8 tune

Samples	Oj	1j	2j	3j	4j	>4j	Used cross section [pb]
LO MG5_aMC	LO	LO	LO	LO	LO	\mathbf{PS}	5787 (FEWZ NNLO)
NLO MG5_aMC	NLO	NLO	NLO	LO	\mathbf{PS}	\mathbf{PS}	5931 (native)
Geneva	NNLO	NLO	LO	\mathbf{PS}	\mathbf{PS}	\mathbf{PS}	5940 (native)
Z+1 jet at NNLO	-	NNLO	(NLO)	(LO)	-	-	

Z ($\rightarrow \ell^+ \ell^-$)+jets at 13 TeV (arXiv:1804.05252)

▶ Integrated luminosity of 2.19 fb⁻¹

Phase Space at Generator Level:

 $\begin{array}{l} \blacktriangleright \quad p_{\mathrm{T}}(\ell) \geq 20 \ \mathrm{GeV}, \ |\eta(\ell)| \leq 2.4 \ \mathrm{and} \\ 71 \leq m_{\ell^+\ell^-} \leq 111 \ \mathrm{GeV} \end{array}$

▶
$$p_{\rm T}(j) \ge 30 \,\, {
m GeV}, \, |y(j)| \le 2.4, \, \Delta R(j, \ell) > 0.4$$

Bin-to-bin migration due to limited detector resolution corrected using unfolding method

Signal: NLO MG5_aMC

Transverse momentum of the Z boson for $N_{\rm jets} \ge 0$

Q.Wang, "Measurement of the differential cross section of Z boson production in association with jets at the LHC", PhD thesis, Université Libre de Bruxelles and Peking University, 2018

http://web.iihe.ac.be/publications/doctoralThesis_QunWANG.pdf (Figure 5.37)

Njets

Leading jet p_T:

Subleading jet p_T :

NLO correction is needed to describe the measurements (jet $p_{\rm T}$ shape)

GENEVA (NNLL'+NNLO) describes the data up to $N_{jets}=2$ but but fails to describe the data for higher jet multiplicities

Z+1 jet fixed order NNLO and NLO MG5_aMC describe data; improved precision for NNLO calculation

LO MG5_aMC+ Pythia8

predicted distribution differs from the measurement

Transverse momentum of the Z boson for $N_{ m jets} \ge 1$

At least one jet requirement shifts the peak toward the higher value \rightarrow possibility of studying multiple gluon emissions away from the non-perturbative region

Small $p_{\rm T}({\rm below \ the \ peak}):$

- all samples are interfaced with Pythia8 with CUETP8M1 tune
- ▶ NLO MG5_aMC is best in describing the data
- GENEVA is below the data but bescribes the shape of the distribution below 10 GeV. GENEVA is LO below the jet cut (30 GeV)

High $p_{\rm T}$:

- ► GENEVA and NLO MG5_aMC describe the data
- LO MG5_aMC shows different shape from data

Correlation observables

▶ p_{T} balance between the Z boson and the vector sum of the jets: $p_{\mathrm{T}}^{\mathrm{bal}} = |\vec{p_{\mathrm{T}}}(Z) + \sum_{\mathrm{iets}} \vec{p_{\mathrm{T}}}(j_i)|, \text{ for } N_{\mathrm{jets}} \ge 1,2,3$

The imbalance is caused by:

- \blacktriangleright hadronic activity outside the jet acceptance $(p_{\rm T}>30$ GeV, |y|<2.4 which is dominant contribution)
- gluon radiation in the central region, not clustered in a jet

- ▶ Jets-Z balance (JZB): JZB = $|\sum_{j \in IS} \vec{p_T}(j_i)| |\vec{p_T}(Z)|$ for $p_T(Z) \leq 50$ GeV and $p_T(Z) \geq 50$ GeV
 - the same source of imbalance as for $p_{\rm T}^{\rm bal}$
 - it allows the distinction of the two configurations, where non-accounted hadronic activity is in the Z hemisphere and where it is in the opposite one

 $N_{\rm jets} \ge 1$

Imbalance (large $p_{\rm T}^{\rm bal}$) from two jets in the final state with one of them out of the acceptance - NLO accuracy for NLO MG5_aMC sample and LO accuracy for other samples

Large $p_{\rm T}^{\rm bal}$: at least 2 jets in the acceptance and one is out GENEVA: 3rd jet is from PS

LO MG5_aMC and NLO MG5_aMC provide reasonable description of the data

 \rightarrow NLO correction is important for the description of hadronic activity beyond the jet acceptance used in this analysis

Correlation observable: $JZB = |\sum_{i \in I} \vec{p_T}(j_i)| - |\vec{p_T}(Z)|$

JZB< 0: unaccounted hadronic activity in the Z hemisphere JZB> 0: unaccounted hadronic activity in the opposite hemisphere $N_{\rm jets} \geq 1$ is required

NLO MG5_aMC prediction provides a better description of the JZB distribution than GENEVA and LO MG5_aMC

Correlation observable: $JZB = |\sum_{j \in IS} \vec{p_T}(j_i)| - |\vec{p_T}(Z)|$

Effect on the imbalance of the hadronic activity beyond the jet acceptance $(p_{\rm T}>30~{\rm GeV},\,|y|<2.4)$ in Monte Carlo:

Dominant contribution is hadronic activity in the forward region (|y| > 2.4)

Outlook

The measurements of Z boson plus jets processes are important:

- deepen our knowledge of QCD
- improve the modeling of the production mechanism involved in Higgs boson measurement and new physics searches
- ▶ high experimental precision (5% total uncertainty for the cross section in the exclusive jet multiplicity of one) exposes data-predictions discrepancies
- NLO is essential to describe jet multiplicity, transverse momentum of the leading jet and Z boson
- NNLO ME models are available with significantly reduced theory uncertainties
 - current precision of the measurement do not allow to conclude on gain in using NNLO vs multipaton NLO ME calculations

 \rightarrow Results suggest using multiparton NLO predictions for the estimation of the Z + jets contribution at the LHC in measurements and searches, and its associated uncertainty

Back up slides

Z ($\rightarrow \ell^+ \ell^-$)+jets at 13 TeV (arXiv:1804.05252)

Cross section in exclusive jet multiplicity for the combination of both decay channels and breakdown of the uncertainties:

Njets	$\frac{d\sigma}{N_{iets}}$	Tot. unc	Stat	JES	JER	Eff	Lumi	Bkg	Pileup	Unf model	Unf stat
	[pb]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
= 0	652.	3.0	0.090	1.1	0.046	1.5	2.3	< 0.01	0.22	-	0.026
= 1	98.0	5.1	0.27	4.3	0.18	1.5	2.3	0.012	0.30	-	0.10
= 2	22.3	7.3	0.62	6.7	0.20	1.6	2.3	0.026	0.43	-	0.26
= 3	4.68	10.	1.3	9.8	0.39	1.7	2.3	0.13	0.29	-	0.54
= 4	1.01	11.	3.4	10.	0.24	1.7	2.3	0.42	0.56	-	1.4
= 5	0.274	14.	5.0	12.	0.076	2.0	2.3	1.2	0.30	-	2.2
= 6	0.045	24.	15.	17.	0.35	1.8	2.4	3.5	1.7	-	6.6