TMDs from PB

REF2018

- Ola Lelek ${ }^{1} \quad$ Francesco Hautmann 1,2
Lissa Keersmaekers $^{1} \quad$ Radek Žlebčík
${ }^{1}$ University of Antwerp (UAntwerp)
${ }^{2}$ University of Oxford
${ }^{3}$ Deutsches Elektronen-Synchrotron (DESY)

Hannes Jung ${ }^{1,3}$ Mees van Kampen ${ }^{1}$ $\int_{\text {Antwerpen }} \begin{aligned} & \text { Univeriteit }\end{aligned}$

Plan for today

Motivation:

We want to develop an approach in which transverse momentum kinematics will be treated without any mismatch between matrix element (ME) and PS

Plan for today

Motivation:

We want to develop an approach in which transverse momentum kinematics will be treated without any mismatch between matrix element (ME) and PS

Plan for today:

- brief reminder of the Parton Branching (PB) method
- comparison of PB with another existing approaches

DGLAP and Sudakov form factor

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equation

DGLAP evolution equation

$$
\frac{d \widetilde{f}_{a}\left(x, \mu^{2}\right)}{d \ln \mu^{2}}=\sum_{b} \int_{x}^{1} d z P_{a b}\left(\mu^{2}, z\right) \widetilde{f}_{b}\left(x / z, \mu^{2}\right)
$$

$x f\left(x, \mu^{2}\right)=\tilde{f}\left(x, \mu^{2}\right)$

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equation

DGLAP evolution equation

$$
\frac{d \widetilde{f}_{a}\left(x, \mu^{2}\right)}{d \ln \mu^{2}}=\sum_{b} \int_{x}^{1} d z P_{a b}\left(\mu^{2}, z\right) \widetilde{f}_{b}\left(x / z, \mu^{2}\right)
$$

$$
x f\left(x, \mu^{2}\right)=\widetilde{f}\left(x, \mu^{2}\right)
$$

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equation

DGLAP evolution equation

$$
\frac{d \tilde{f}_{a}\left(x, \mu^{2}\right)}{d \ln \mu^{2}}=\sum_{b} \int_{x}^{1} d z P_{a b}\left(\mu^{2}, z\right) \widetilde{f}_{b}\left(x / z, \mu^{2}\right)
$$

$$
x f\left(x, \mu^{2}\right)=\tilde{f}\left(x, \mu^{2}\right)
$$

$\int_{0}^{1} f(x) g(x)+\mathrm{d} x=\int_{0}^{1}(f(x)-f(1)) g(x) \mathrm{d} x$

$$
P_{a b}=D_{a b} \delta(1-z)+K_{a b} \frac{1}{(1-z)_{+}}+R_{a b}
$$

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equation

DGLAP evolution equation

$$
\frac{d \widetilde{f}_{a}\left(x, \mu^{2}\right)}{d \ln \mu^{2}}=\sum_{b} \int_{x}^{1} d z P_{a b}\left(\mu^{2}, z\right) \widetilde{f}_{b}\left(x / z, \mu^{2}\right)
$$

$$
x f\left(x, \mu^{2}\right)=\tilde{f}\left(x, \mu^{2}\right)
$$

$$
P_{a b}=D_{a b} \delta(1-z)+K_{a b} \frac{1}{(1-z)_{+}}+R_{a b}
$$

$$
\int_{0}^{1} f(x) g(x)+\mathrm{d} x=\int_{0}^{1}(f(x)-f(1)) g(x) \mathrm{d} x
$$

problems for numerical solution:

1. $\delta(1-z) \rightarrow$ momentum sum rule $\sum_{c} \int_{0}^{1} \mathrm{dzz} P_{c a}\left(\mu^{2}, z\right)=0$
2. integrals separately divergent: $\int_{0}^{1} \rightarrow \int_{0}^{z_{M}}, z_{M} \approx 1$:

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equation

DGLAP evolution equation

$$
\frac{d \widetilde{f}_{a}\left(x, \mu^{2}\right)}{d \ln \mu^{2}}=\sum_{b} \int_{x}^{1} d z P_{a b}\left(\mu^{2}, z\right) \widetilde{f}_{b}\left(x / z, \mu^{2}\right)
$$

$x f\left(x, \mu^{2}\right)=\tilde{f}\left(x, \mu^{2}\right)$
$P_{a b}=D_{a b} \delta(1-z)+K_{a b} \frac{1}{(1-z)_{+}}+R_{a b}$,
$\int_{0}^{1} f(x) g(x)+\mathrm{d} x=\int_{0}^{1}(f(x)-f(1)) g(x) \mathrm{d} x$
problems for numerical solution:

1. $\delta(1-z) \rightarrow$ momentum sum rule $\sum_{c} \int_{0}^{1} \mathrm{dzz} P_{c a}\left(\mu^{2}, z\right)=0$
2. integrals separately divergent: $\int_{0}^{1} \rightarrow \int_{0}^{z_{M}}, z_{M} \approx 1$:

- resolvable $z<z_{M}$ and non-resolvable $z>z_{M}$ branchings

Introduce the Sudakov form factor: $\Delta_{a}\left(\mu^{2}\right)=\exp \left(-\int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} \sum_{b} \int_{0}^{z_{M}} d z z P_{b a}^{R}\left(\mu^{\prime 2}, z\right)\right)$ Advantages:

- Δ_{a} : probability of an evolution without any resolvable branching

Iterative solution

After integration:

$$
\widetilde{f}_{a}\left(x, \mu^{2}\right)=\widetilde{f}_{a}\left(x, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}\right)+\int_{\ln \mu_{0}^{2}}^{\ln \mu^{2}} d \ln \mu_{1}^{2} \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu_{1}^{2}\right)} \sum_{b} \int_{x}^{z_{M}} d z_{1} P_{a b}^{R}\left(\mu_{1}^{2}, z_{1}\right) \widetilde{f}_{b}\left(\frac{x}{z_{1}}, \mu_{0}^{2}\right) \Delta_{b}\left(\mu_{1}^{2}\right)+\ldots
$$

Iterative solution

After integration:

$$
\tilde{f}_{a}\left(x, \mu^{2}\right)=\widetilde{f}_{a}\left(x, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}\right)+\int_{\ln \mu_{0}^{2}}^{\ln \mu^{2}} d \ln \mu_{1}^{2} \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu_{1}^{2}\right)} \sum_{b} \int_{x}^{z_{M}} d z_{1} P_{a b}^{R}\left(\mu_{1}^{2}, z_{1}\right) \widetilde{f}_{b}\left(\frac{x}{z_{1}}, \mu_{0}^{2}\right) \Delta_{b}\left(\mu_{1}^{2}\right)+\ldots
$$

a is a gluon at the scale μ^{2} and x. Where does it come from?

Iterative solution

After integration:

$$
\tilde{f}_{a}\left(x, \mu^{2}\right)=\widetilde{f}_{a}\left(x, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}\right)+\int_{\ln \mu_{0}^{2}}^{\ln \mu^{2}} d \ln \mu_{1}^{2} \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu_{1}^{2}\right)} \sum_{b} \int_{x}^{z_{M}} d z_{1} P_{a b}^{R}\left(\mu_{1}^{2}, z_{1}\right) \widetilde{f}_{b}\left(\frac{x}{z_{1}}, \mu_{0}^{2}\right) \Delta_{b}\left(\mu_{1}^{2}\right)+\ldots
$$

a is a gluon at the scale μ^{2} and x. Where does it come from?

Iterative solution

After integration:

$$
\widetilde{f}_{a}\left(x, \mu^{2}\right)=\widetilde{f}_{a}\left(x, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}\right)+\int_{\ln \mu_{0}^{2}}^{\ln \mu^{2}} d \ln \mu_{1}^{2} \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu_{1}^{2}\right)} \sum_{b} \int_{x}^{z_{M}} d z_{1} P_{a b}^{R}\left(\mu_{1}^{2}, z_{1}\right) \widetilde{f}_{b}\left(\frac{x}{z_{1}}, \mu_{0}^{2}\right) \Delta_{b}\left(\mu_{1}^{2}\right)+\ldots
$$

a is a gluon at the scale μ^{2} and x. Where does it come from?
$a, x \quad \varepsilon^{\mu}$

$\varepsilon=x_{0} \quad \xi_{0}$

Iterative solution

After integration:

$$
\tilde{f}_{a}\left(x, \mu^{2}\right)=\widetilde{f}_{a}\left(x, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}\right)+\int_{\ln \mu_{0}^{2}}^{\ln \mu^{2}} d \ln \mu_{1}^{2} \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu_{1}^{2}\right)} \sum_{b} \int_{x}^{z_{M}} d z_{1} P_{a b}^{R}\left(\mu_{1}^{2}, z_{1}\right) \tilde{f}_{b}\left(\frac{x}{z_{1}}, \mu_{0}^{2}\right) \Delta_{b}\left(\mu_{1}^{2}\right)+\ldots
$$

a is a gluon at the scale μ^{2} and x. Where does it come from?

Validation of the method with QCDNUM

QCDNUM - semi-analytical solution of DGLAP Comput. Phys. Commun., 2011, 182, 490-532
input at μ_{0}^{2} : QCDNUM \rightarrow evolve with PB up $\mu^{2} \rightarrow$ compare

Validation of the method with QCDNUM

QCDNUM - semi-analytical solution of DGLAP Comput. Phys. Commun., 2011, 182, 490-532
input at $\mu_{0}^{2}:$ QCDNUM \rightarrow evolve with PB up $\mu^{2} \rightarrow$ compare
How are the collinear distributions affected by the z_{M} parameter?

Very good agreement with QCDNUM

Parton Branching method to obtain TMDs

Interpretation of the evolution scale: virtuality and p_{\perp} - ordering

Momentum conservation

$$
k_{b}=k_{a}+q_{c}
$$

Assumptions: $k_{a}^{+}=z k_{b}^{+}, q_{c}^{+}=(1-z) k_{b}^{+}, k_{b}^{2}=0, q_{c}^{2}=0$ $k_{\perp, b}=0 \rightarrow k_{\perp, a}=-q_{\perp, c}$

$$
k_{a}^{2}(1-z)=-q_{\perp, c}^{2}
$$

associate: $\mu^{\prime 2}=-k_{a}^{2}$

$$
\mu^{\prime 2}(1-z)=q_{\perp, c}^{2}
$$

\rightarrow virtuality ordering condition, partons in the cascade are ordered in virtuality

Interpretation of the evolution scale: virtuality and p_{\perp} - ordering

Momentum conservation

$$
k_{b}=k_{a}+q_{c}
$$

Assumptions: $k_{a}^{+}=z k_{b}^{+}, q_{c}^{+}=(1-z) k_{b}^{+}, k_{b}^{2}=0, q_{c}^{2}=0$ $k_{\perp, b}=0 \rightarrow k_{\perp, a}=-q_{\perp, c}$

$$
k_{a}^{2}(1-z)=-q_{\perp, c}^{2}
$$

associate: $\mu^{\prime 2}=-k_{a}^{2}$

$$
\mu^{\prime 2}(1-z)=q_{\perp, c}^{2}
$$

\rightarrow virtuality ordering condition, partons in the cascade are ordered in virtuality Limit of $z \rightarrow 0$:

$$
\mu^{\prime 2}=q_{\perp, c}^{2}
$$

$\rightarrow p_{\perp}$-ordering condition, partons in the cascade are ordered in p_{\perp}

Interpretation of the evolution scale: angular ordering

> colour coherence phenomena: angular ordering of the soft gluons emissions $$
\Theta_{i+1}>\Theta_{i}
$$

Interpretation of the evolution scale: angular ordering

colour coherence phenomena:
angular ordering of the soft gluons emissions

$$
\begin{gathered}
\Theta_{i+1}>\Theta_{i} \\
\left|q_{\perp, i}\right|=\left(1-z_{i}\right)\left|\vec{k}_{i-1}\right| \sin \Theta_{i}
\end{gathered}
$$

Associate:

$$
q_{\perp, i}^{2}=\left(1-z_{i}\right)^{2} \mu^{\prime 2}
$$

\rightarrow angular ordering condition

TMD from DGLAP

replace $q_{\perp, c}$ with $q_{0} \rightarrow$ conditions for the z_{M} value:

- p_{\perp} - ordering: $\mu^{22} 1 \quad=q_{\perp, c}^{2} \quad \rightarrow \quad z_{M}=$ fixed
- virtuality ordering: $\mu^{\prime 2}(1-z)=q_{\perp, c}^{2} \rightarrow z_{M}=1-\left(\frac{q_{0}}{\mu^{\prime}}\right)^{2}$
- angular ordering: $\mu^{\prime 2}(1-z)^{2}=q_{\perp, c}^{2} \rightarrow z_{M}=1-\left(\frac{q_{0}}{\mu^{\prime}}\right)$
renormalization scale in α_{s} should be chosen to be q_{\perp}^{2}, rather than the evolution scale $\mu^{\prime 2}$

TMD from DGLAP

replace $q_{\perp, c}$ with $q_{0} \rightarrow$ conditions for the z_{M} value:

- p_{\perp} - ordering: $\mu^{22} 1 \quad=q_{\perp, c}^{2} \quad \rightarrow \quad z_{M}=$ fixed
- virtuality ordering: $\mu^{\prime 2}(1-z)=q_{\perp, c}^{2} \rightarrow z_{M}=1-\left(\frac{q_{0}}{\mu^{\prime}}\right)^{2}$
- angular ordering: $\mu^{\prime 2}(1-z)^{2}=q_{\perp, c}^{2} \quad \rightarrow \quad z_{M}=1-\left(\frac{q_{0}}{\mu^{\prime}}\right)$

renormalization scale in α_{s} should be chosen to be q_{\perp}^{2}, rather than the evolution scale $\mu^{\prime 2}$ $\vec{k}_{\perp, a}=\vec{k}_{\perp, b}-\vec{q}_{\perp, c}$

TMD from DGLAP

replace $q_{\perp, c}$ with $q_{0} \rightarrow$ conditions for the z_{M} value:

- p_{\perp} - ordering: $\mu^{22} 1 \quad=q_{\perp, c}^{2} \quad \rightarrow \quad z_{M}=$ fixed
- virtuality ordering: $\mu^{\prime 2}(1-z)=q_{\perp, c}^{2} \rightarrow z_{M}=1-\left(\frac{q_{0}}{\mu^{\prime}}\right)^{2}$
- angular ordering: $\mu^{\prime 2}(1-z)^{2}=q_{\perp, c}^{2} \quad \rightarrow \quad z_{M}=1-\left(\frac{q_{0}}{\mu^{\prime}}\right)$
 renormalization scale in α_{s} should be chosen to be q_{\perp}^{2}, rather than the evolution scale $\mu^{\prime 2}$ $\vec{k}_{\perp, a}=\vec{k}_{\perp, b}-\vec{q}_{\perp, c}$
- $\vec{k}_{\perp, a}$ contains the whole history of the evolution
- PB method: effect of every individual part of the ordering definition can be studied separately
- collinear PDFs not affected by the ordering if $z_{M} \approx 1$ and $\alpha_{s}\left(\mu^{\prime 2}\right)$

Results

Effect of ordering choice and z_{M} on TMDs

$$
\begin{gathered}
p_{\perp}-\text { ordering } \\
q_{\perp}^{2}=1 \mu^{\prime 2}
\end{gathered}
$$

$$
\begin{aligned}
& \text { virtuality ordering } \\
& q_{\perp}^{2}=(1-z) \mu^{\prime 2}
\end{aligned}
$$

Everywhere: fixed $z_{M}, \alpha_{s}\left(1 \mu^{\prime 2}\right)$

angular ordering
$q_{\perp}^{2}=(1-z)^{2} \mu^{\prime 2}$
$p_{\perp^{-}}$ordering: not stable TMD
p_{\perp} - ordering valid only for $z \rightarrow 0$, otherwise violates the energy-momentum conservation
virtuality-ordering: difference between z_{M} only in the small k_{\perp} region at higher scales. large improvement compared to p_{\perp}-ordering angular-ordering: no visible difference between dirrefernt $z_{M} \rightarrow$ stable TMD

Renormalization scale

virtuality ordering $q_{\perp}^{2}=(1-z) \mu^{\prime 2}$	angular ordering $q_{\perp}^{2}=(1-z)^{2} \mu^{\prime 2}$
$z_{M}=1-\left(\frac{q_{0}}{\mu^{\prime}}\right)^{2}$	$z_{M}=1-\left(\frac{q_{0}}{\mu^{\prime}}\right)$
$\alpha_{s}\left(q_{\perp}^{2}\right)$	

angular ordering, the same conclusions for virtuality ordering.

Collinear and TMD PDFs affected significantly by the change of renormalization scale \rightarrow by full virtuality or angular ordering extra large logarithms resummed.

Prediction for \mathbf{Z} boson p_{\perp} spectrum using TMDs

Procedure:

- DY LO matrix element: $q \bar{q} \rightarrow Z$

Prediction for \mathbf{Z} boson p_{\perp} spectrum using TMDs

Procedure:

- DY LO matrix element: $q \bar{q} \rightarrow Z$
- Generate k_{\perp} of $q \bar{q}$ according to TMDs
 ($m_{\text {DY }}$ fixed, x_{1}, x_{2} change)
- compare with the 8 TeV ATLAS measurement

Prediction for Z boson p_{\perp} spectrum using TMDs

- difference between angular and virtuality ordering visible
- angular ordering: the shape of Z boson p_{\perp} spectrum reproduced

Prediction for Z boson p_{\perp} spectrum using TMDs

Results after the fit. Experimental and model uncertainty

- difference between angular and virtuality ordering visible
- angular ordering: the shape of Z boson p_{\perp} spectrum reproduced
- with $\alpha_{s}\left((1-z)^{2} \mu^{\prime 2}\right)$ agreement within the data much better than for $\alpha_{s}\left(\mu^{\prime 2}\right)$
- All the p_{\perp} dependence directly from the PB method
- prediction for the whole spectrum from one method
- no tuning/adjustment of free parameters
- PB method is successful

Prediction for Z boson p_{\perp} spectrum using TMDs

Results after the fit. Experimental and model uncertainty

- difference between angular and virtuality ordering visible
- angular ordering: the shape of Z boson p_{\perp} spectrum reproduced
- with $\alpha_{s}\left((1-z)^{2} \mu^{\prime 2}\right)$ agreement within the data much better than for $\alpha_{s}\left(\mu^{\prime 2}\right)$
- All the p_{\perp} dependence directly from the PB method
- prediction for the whole spectrum from one method

For more applications and fit procedure see the talks of:
Armando Bermudez Martinez
Daniela Dominguez Damiani

- PB method is successful

PB and other approaches

PB and Marchesini, Webber

PB with angular ordering is very successful

PB and Marchesini, Webber

PB with angular ordering is very successful

PB for angular ordering:

$$
\begin{align*}
& \widetilde{f}_{a}\left(x, \mu^{2}\right)=\widetilde{f}_{a}\left(x, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}\right) \\
+ & \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu^{\prime 2}\right)} \sum_{b} \int_{x}^{1-\frac{q_{0}}{\mu^{\prime}}} d z \alpha_{s}\left((1-z)^{2} \mu^{\prime 2}\right) P_{a b}^{R}\left(\mu^{\prime 2}, z\right) \widetilde{f}_{b}\left(\frac{x}{z}, \mu^{\prime 2}\right) \tag{1}
\end{align*}
$$

where

$$
q_{\perp, i}^{2}=\left(1-z_{i}\right)^{2} \mu^{\prime 2}
$$

Eq. (1) is identical to the Marchesini and Webber (MarWeb1988) prescription Nuclear Physics B310 (1988) 461-526

PB and KMR/MRW

Reminder: Kimber, Martin, Ryskin (KMR) (and Martin, Ryskin, Watt (MRW)): method to obtain TMDs (unintegrated PDFs) from the integrated PDFs and the Sudakov form factors Phys. Rev. D63 (2001) 114027

$$
\begin{align*}
& \tilde{f}_{a}\left(x, \mu^{2}\right)=\widetilde{f}_{a}\left(x, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}\right) \\
&+\quad \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d q_{\perp}^{2}}{q_{\perp}^{2}} \underbrace{\left(\Delta_{a}\left(\mu^{2}, q_{\perp}^{2}\right) \sum_{b} \int_{x}^{1-C\left(q_{\perp}\right)} d z P_{a b}^{R}\left(q_{\perp}^{2}, z\right) \widetilde{f}_{b}\left(\frac{x}{z}, q_{\perp}^{2}\right)\right)}_{\tilde{f}\left(x, \mu^{2}, q_{\perp}^{2}\right)} \tag{2}
\end{align*}
$$

at this last step of the evolution the unintegrated distribution becomes dependent on two scales:

$$
q_{\perp} \text { and } \mu
$$

This would be almost equivalent to PB formula for p_{\perp}-ordering where $q_{t}=\mu$

PB and KMR/MRW

Reminder: Kimber, Martin, Ryskin (KMR) (and Martin, Ryskin, Watt (MRW)): method to obtain TMDs (unintegrated PDFs) from the integrated PDFs and the Sudakov form factors Phys. Rev. D63 (2001) 114027

$$
\begin{align*}
& \tilde{f}_{a}\left(x, \mu^{2}\right)=\widetilde{f}_{a}\left(x, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}\right) \\
&+\int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d q_{\perp}^{2}}{q_{\perp}^{2}} \underbrace{\left(\Delta_{a}\left(\mu^{2}, q_{\perp}^{2}\right) \sum_{b} \int_{x}^{1-c\left(q_{\perp}\right)} d z P_{a b}^{R}\left(q_{\perp}^{2}, z\right) \widetilde{f}_{b}\left(\frac{x}{z}, q_{\perp}^{2}\right)\right)}_{\tilde{f}\left(x, \mu^{2}, q_{\perp}^{2}\right)} \tag{2}
\end{align*}
$$

at this last step of the evolution the unintegrated distribution becomes dependent on two scales:

$$
q_{\perp} \text { and } \mu
$$

This would be almost equivalent to PB formula for p_{\perp}-ordering where $q_{t}=\mu$ Why almost? In PB:

- for p_{\perp}-ordering: C is a fixed number e.g. 10^{-3}
- k_{\perp} does not come only from the last step! \rightarrow I will come back to this later

PB and KMR/MRW

In KMR:

- "Strong ordering": $C\left(q_{\perp}\right)=\frac{q_{\perp}}{\mu}$ and $q_{\perp}<\mu(1-x)$
- "Angular ordering" $C\left(q_{\perp}\right)=\frac{\mu}{q_{\perp}+\mu}$ and $q_{\perp}<\mu \frac{1-x}{x}$

PB and KMR/MRW

In KMR:

- "Strong ordering": $C\left(q_{\perp}\right)=\frac{q_{\perp}}{\mu}$ and $q_{\perp}<\mu(1-x)$
- "Angular ordering" $C\left(q_{\perp}\right)=\frac{\mu}{q_{\perp}+\mu}$ and $q_{\perp}<\mu \frac{1-x}{x}$

PB for angular ordering written in terms of integral over q_{\perp} (identical to MarWeb1988):

$$
\begin{gathered}
\widetilde{f}_{a}\left(x, \mu^{2}\right)=\widetilde{f}_{a}\left(x, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}\right)+\int_{q_{0}^{2}}^{(1-x)^{2} \mu^{2}} \frac{d q_{\perp}^{2}}{q_{\perp}^{2}} \Delta_{a}\left(\mu^{2}, \frac{q_{\perp}^{2}}{(1-z)^{2}}\right) \\
\times \quad \sum_{b} \int_{x}^{1-\frac{q_{\perp}}{\mu}} d z \alpha_{s}\left(q_{\perp}^{2}\right) P_{a b}^{R}\left(\frac{q_{\perp}^{2}}{(1-z)^{2}}, z\right) \widetilde{f}_{b}\left(\frac{x}{z}, \frac{q_{\perp}^{2}}{(1-z)^{2}}\right)
\end{gathered}
$$

PB and KMR/MRW
In KMR:

- "Strong ordering": $C\left(q_{\perp}\right)=\frac{q_{\perp}}{\mu}$ and $q_{\perp}<\mu(1-x)$
- "Angular ordering" $C\left(q_{\perp}\right)=\frac{\mu}{q_{\perp}+\mu}$ and $q_{\perp}<\mu \frac{1-x}{x}$

PB for angular ordering written in terms of integral over q_{\perp} (identical to MarWeb1988):

$$
\begin{gather*}
\widetilde{f}_{a}\left(x, \mu^{2}\right)=\widetilde{f}_{a}\left(x, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}\right)+\int_{q_{0}^{2}}^{(1-x)^{2} \mu^{2}} \frac{d q_{\perp}^{2}}{q_{\perp}^{2}} \Delta_{a}\left(\mu^{2}, \frac{q_{\perp}^{2}}{(1-z)^{2}}\right) \\
\times \quad \sum_{b} \int_{x}^{1-\frac{q_{\perp}}{\mu}} d z \alpha_{s}\left(q_{\perp}^{2}\right) P_{a b}^{R}\left(\frac{q_{\perp}^{2}}{(1-z)^{2}}, z\right) \widetilde{f}_{b}\left(\frac{x}{z}, \frac{q_{\perp}^{2}}{(1-z)^{2}}\right) \tag{3}
\end{gather*}
$$

KMR for "strong ordering" :

$$
\begin{align*}
& \widetilde{f}_{a}\left(x, \mu^{2}\right)=\widetilde{f}_{a}\left(x, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}\right)+\int_{\mu_{0}^{2}}^{(1-x)^{2} \mu^{2}} \frac{d q_{\perp}^{2}}{q_{\perp}^{2}} \Delta_{a}\left(\mu^{2}, q_{\perp}^{2}\right) \\
& \times \quad \sum_{b} \int_{x}^{1-\frac{q_{\perp}}{\mu}} d z \alpha_{s}\left(q_{\perp}^{2}\right) P_{a b}^{R}\left(q_{\perp}^{2}, z\right) \widetilde{f}_{b}\left(\frac{x}{z}, q_{\perp}^{2}\right) \tag{4}
\end{align*}
$$

PB and KMR/MRW

In KMR:

- "Strong ordering": $C\left(q_{\perp}\right)=\frac{q_{\perp}}{\mu}$ and $q_{\perp}<\mu(1-x)$
- "Angular ordering" $C\left(q_{\perp}\right)=\frac{\mu}{q_{\perp}+\mu}$ and $q_{\perp}<\mu \frac{1-x}{x}$

PB for angular ordering written in terms of integral over q_{\perp} (identical to MarWeb1988):

$$
\begin{align*}
& \widetilde{f}_{a}\left(x, \mu^{2}\right)=\widetilde{f}_{a}\left(x, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}\right)+\int_{q_{0}^{2}}^{(1-x)^{2} \mu^{2}} \frac{d q_{\perp}^{2}}{q_{\perp}^{2}} \Delta_{a}\left(\mu^{2}, \frac{q_{\perp}^{2}}{(1-z)^{2}}\right) \\
& \times \quad \sum_{b} \int_{x}^{1-\frac{q_{\perp}}{\mu}} d z \alpha_{s}\left(q_{\perp}^{2}\right) P_{a b}^{R}\left(\frac{q_{\perp}^{2}}{(1-z)^{2}}, z\right) \widetilde{f}_{b}\left(\frac{x}{z}, \frac{q_{\perp}^{2}}{(1-z)^{2}}\right) \tag{3}
\end{align*}
$$

KMR for "angular ordering" :

$$
\begin{align*}
& \tilde{f}_{a}\left(x, \mu^{2}\right)=\widetilde{f}_{a}\left(x, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}\right)+\int_{\mu_{0}^{2}}^{\left(\frac{(1-x)}{x}\right)^{2} \mu^{2}} \frac{d q_{\perp}^{2}}{q_{\perp}^{2}} \Delta_{a}\left(\mu^{2}, q_{\perp}^{2}\right) \\
& \times \sum_{b} \int_{x}^{1-\frac{\mu}{q_{\perp}+\mu}} d z \alpha_{s}\left(q_{\perp}^{2}\right) P_{a b}^{R}\left(q_{\perp}^{2}, z\right) \tilde{f}_{b}\left(\frac{x}{z}, q_{\perp}^{2}\right) \tag{5}
\end{align*}
$$

at first sight KMR for "angular ordering" doesn't look similar to MarWeb1988 or PB with angular ordering. How do the distributions look like?

PB and KMR/MRW: distributions

PB: intrinsic k_{\perp} is a Gauss distribution with width $=0.5 \mathrm{GeV}$
$\mathrm{KMR} / \mathrm{MRW}$ parametrization for $k_{\perp}<k_{0}=1 \mathrm{GeV}$:

$$
\frac{\widetilde{f}_{a}\left(x, k_{\perp}, \mu^{2}\right)}{k_{\perp}^{2}}=\frac{1}{\mu_{0}^{2}} \widetilde{f}_{a}\left(x, k_{\perp}, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}, \mu_{0}^{2}\right)=\mathrm{const}
$$

TMD sets obtained according to KMR/MRW formalism with angular ordering included in TMDlib in TMD set called MRW-ct10nlo Eur.Phys.J.C78(2018)no.2,137

PB and KMR/MRW: distributions

PB: intrinsic k_{\perp} is a Gauss distribution with width $=0.5 \mathrm{GeV}$
$\mathrm{KMR} / \mathrm{MRW}$ parametrization for $k_{\perp}<k_{0}=1 \mathrm{GeV}$:

$$
\frac{\widetilde{f}_{a}\left(x, k_{\perp}, \mu^{2}\right)}{k_{\perp}^{2}}=\frac{1}{\mu_{0}^{2}} \widetilde{f}_{a}\left(x, k_{\perp}, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}, \mu_{0}^{2}\right)=\mathrm{const}
$$

TMD sets obtained according to KMR/MRW formalism with angular ordering included in TMDlib in TMD set called MRW-ct10nlo Eur.Phys.J.C78(2018)no.2,137

PB and KMR/MRW: distributions

PB: intrinsic k_{\perp} is a Gauss distribution with width $=0.5 \mathrm{GeV}$
$\mathrm{KMR} / \mathrm{MRW}$ parametrization for $k_{\perp}<k_{0}=1 \mathrm{GeV}$:

$$
\frac{\widetilde{f}_{a}\left(x, k_{\perp}, \mu^{2}\right)}{k_{\perp}^{2}}=\frac{1}{\mu_{0}^{2}} \widetilde{f}_{a}\left(x, k_{\perp}, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}, \mu_{0}^{2}\right)=\mathrm{const}
$$

TMD sets obtained according to KMR/MRW formalism with angular ordering included in TMDlib in TMD set called MRW-ct10nlo Eur.Phys.J.C78(2018)no.2,137 exercise:

PB last Step: try to obtain KMR from PB:
take PB with angular ordering but take k_{\perp} only from the last emission
do $\vec{k}_{\perp, a}=-\vec{d}_{\perp, c}$ instead $\vec{k}_{\perp, a}=\vec{k}_{\perp, b}-\vec{d}_{\perp, c}$ (PB full)
$k_{t}<1 \mathrm{GeV}$:

- KMR/MRW: initial parametrization
- PB last Step: matching of intrinsic k_{\perp} and evolution clearly visible
- PB full: matching of intrinsic k_{\perp} and evolution smeared during evolution

For $k_{t} \in(\approx 10 \mathrm{GeV}, \approx \mu)$:
PB full and KMR/MRW very similar!

Z boson p_{\perp} spectrum

- PB with angular ordering and full evolution works very well
- KMR/MRW works well for small and middle-range k_{\perp} but for higher k_{\perp} it overestimates the data
- PB with last step evolution not sufficent

PB and CSS

WORK IN PROGRESS

Reminder: Collins, Soper and Sterman TMD factorization formula for the DY cross section: Nuclear Physics B250 (1985) 199-224

$$
\begin{array}{r}
\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} Q_{T}^{2}} \sim \frac{4 \pi^{2} \alpha^{2}}{9 Q^{2} s} \frac{1}{(2 \pi)^{2}} \int \mathrm{~d}^{2} b \exp \left(i Q_{T} \cdot b\right) \sum_{j} e_{j}^{2} \cdot \sum_{a} \int_{x_{A}}^{1} \frac{\mathrm{~d} \xi_{A}}{\xi_{A}} f_{a / A}\left(\xi_{A}, 1 / b\right) \\
\sum_{b} \int_{x_{B}}^{1} \frac{\mathrm{~d} \xi_{B}}{\xi_{B}} f_{b / B}\left(\xi_{B}, 1 / b\right) \exp \left(-\int_{1 / b^{2}}^{Q^{2}} \frac{\mathrm{~d} \bar{\mu}^{2}}{\bar{\mu}^{2}}\left[\ln \left(\frac{Q^{2}}{\bar{\mu}^{2}}\right) A(g(\bar{\mu}))+B(g(\bar{\mu}))\right]\right) \tag{6}\\
\cdot C_{j a}\left(\frac{x_{A}}{\xi_{A}}, g(1 / b)\right) C_{j b}\left(\frac{x_{B}}{\xi_{B}}, g(1 / b)\right)+\frac{4 \pi^{2} \alpha^{2}}{9 Q^{2} s} Y\left(Q_{T}, Q, x_{A}, x_{B}\right)
\end{array}
$$

where $A=\sum_{i}\left(\frac{\alpha_{S}(\mu)}{\pi}\right)^{i} A^{i}$, the same for B and C.

PB and CSS

WORK IN PROGRESS

Reminder: Collins, Soper and Sterman TMD factorization formula for the DY cross section:
Nuclear Physics B250 (1985) 199-224

$$
\begin{array}{r}
\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} Q_{T}^{2}} \sim \frac{4 \pi^{2} \alpha^{2}}{9 Q^{2} s} \frac{1}{(2 \pi)^{2}} \int \mathrm{~d}^{2} b \exp \left(i Q_{T} \cdot b\right) \sum_{j} e_{j}^{2} \cdot \sum_{a} \int_{x_{A}}^{1} \frac{\mathrm{~d} \xi_{A}}{\xi_{A}} f_{a / A}\left(\xi_{A}, 1 / b\right) \\
\sum_{b} \int_{x_{B}}^{1} \frac{\mathrm{~d} \xi_{B}}{\xi_{B}} f_{b / B}\left(\xi_{B}, 1 / b\right) \exp \left(-\int_{1 / b^{2}}^{Q^{2}} \frac{\mathrm{~d} \bar{\mu}^{2}}{\bar{\mu}^{2}}\left[\ln \left(\frac{Q^{2}}{\bar{\mu}^{2}}\right) A(g(\bar{\mu}))+B(g(\bar{\mu}))\right]\right) \tag{6}\\
\cdot C_{j a}\left(\frac{x_{A}}{\xi_{A}}, g(1 / b)\right) C_{j b}\left(\frac{x_{B}}{\xi_{B}}, g(1 / b)\right)+\frac{4 \pi^{2} \alpha^{2}}{9 Q^{2} s} Y\left(Q_{T}, Q, x_{A}, x_{B}\right)
\end{array}
$$

where $A=\sum_{i}\left(\frac{\alpha_{s}(\mu)}{\pi}\right)^{i} A^{i}$, the same for B and C.

- one scale evolution up to a scale $1 / b$
- in the last step of the evolution the dependence on the second scale enters
a bit like KRM with "strong ordering"

PB and CSS

WORK IN PROGRESS

$$
\begin{array}{r}
\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} Q_{T}^{2}} \sim \frac{4 \pi^{2} \alpha^{2}}{9 Q^{2} s} \frac{1}{(2 \pi)^{2}} \int \mathrm{~d}^{2} b \exp \left(i Q_{T} \cdot b\right) \sum_{j} e_{j}^{2} \cdot \sum_{a} \int_{x_{A}}^{1} \frac{\mathrm{~d} \xi_{A}}{\xi_{A}} f_{a / A}\left(\xi_{A}, 1 / b\right) \\
\sum_{b} \int_{x_{B}}^{1} \frac{\mathrm{~d} \xi_{B}}{\xi_{B}} f_{b / B}\left(\xi_{B}, 1 / b\right) \exp \left(-\int_{1 / b^{2}}^{Q^{2}} \frac{\mathrm{~d} \bar{\mu}^{2}}{\bar{\mu}^{2}}\left[\ln \left(\frac{Q^{2}}{\bar{\mu}^{2}}\right) A(g(\bar{\mu}))+B(g(\bar{\mu}))\right]\right) \\
\cdot C_{j a}\left(\frac{x_{A}}{\xi_{A}}, g(1 / b)\right) C_{j b}\left(\frac{x_{B}}{\xi_{B}}, g(1 / b)\right)+\frac{4 \pi^{2} \alpha^{2}}{9 Q^{2} s} Y\left(Q_{T}, Q, x_{A}, x_{B}\right)
\end{array}
$$

PB and CSS

WORK IN PROGRESS

$$
\begin{array}{r}
\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} Q_{T}^{2}} \sim \frac{4 \pi^{2} \alpha^{2}}{9 Q^{2} s} \frac{1}{(2 \pi)^{2}} \int \mathrm{~d}^{2} b \exp \left(i Q_{T} \cdot b\right) \sum_{j} e_{j}^{2} \cdot \sum_{a} \int_{x_{A}}^{1} \frac{\mathrm{~d} \xi_{A}}{\xi_{A}} f_{a / A}\left(\xi_{A}, 1 / b\right) \\
\sum_{b} \int_{x_{B}}^{1} \frac{\mathrm{~d} \xi_{B}}{\xi_{B}} f_{b / B}\left(\xi_{B}, 1 / b\right) \exp \left(-\int_{1 / b^{2}}^{Q^{2}} \frac{\mathrm{~d} \bar{\mu}^{2}}{\bar{\mu}^{2}}\left[\ln \left(\frac{Q^{2}}{\bar{\mu}^{2}}\right) A(g(\bar{\mu}))+B(g(\bar{\mu}))\right]\right) \\
\cdot C_{j a}\left(\frac{x_{A}}{\xi_{A}}, g(1 / b)\right) C_{j b}\left(\frac{x_{B}}{\xi_{B}}, g(1 / b)\right)+\frac{4 \pi^{2} \alpha^{2}}{9 Q^{2} s} Y\left(Q_{T}, Q, x_{A}, x_{B}\right)
\end{array}
$$

PB: Sudakov form factor with $P_{b a}^{R}$ but possible also with P_{a}^{V} (momentum sum rule).
For angular ordering:

$$
\Delta_{a}\left(\mu^{2}\right)=\exp \left(-\int_{q_{0}^{2}}^{\mu^{2}} \frac{d q_{\perp}^{2}}{q_{\perp}^{2}}\left(\int_{0}^{1-\frac{q_{\perp}}{\mu}} d z\left(k_{a} \frac{1}{1-z}\right)-d\right)\right)
$$

notice: $2 \int_{0}^{1-\frac{q_{\perp}}{\mu}} d z\left(\frac{1}{1-z}\right)=\ln \left(\frac{\mu}{q_{\perp}}\right)^{2}$
PB with angular ordering: in Sudakov the same coefficients as $\underbrace{\frac{1}{2} A^{1}}_{\text {LL }}, \underbrace{\frac{1}{2} A^{2} \text { and } \frac{1}{2} B^{1}}_{\text {NLL }}$ in CSS in PB we have also $\underbrace{\frac{1}{2} B^{2}+T}_{\text {NNLL }}$ where $T \sim\left(\frac{\alpha_{s}}{\pi}\right)^{2} f\left(n_{f}\right)$

Summary and Conclusions

Summary and Conclusions

- DGLAP evolution equation solved with Parton Branching method
- collinear PDFs and TMDs obtained
- different ordering definitions studied
- application of the TMDs to the Z boson p_{\perp}, a very good description of the 8 TeV data with angular ordering
- studies on comparison with Marchesini and Webber, KMR and CSS ongoing
- results in: Phys.Lett. B772 (2017) 446-451, JHEP 1801 (2018) 070, arXiv:1804.11152

Summary and Conclusions

- DGLAP evolution equation solved with Parton Branching method
- collinear PDFs and TMDs obtained
- different ordering definitions studied
- application of the TMDs to the Z boson p_{\perp}, a very good description of the 8 TeV data with angular ordering
- studies on comparison with Marchesini and Webber, KMR and CSS ongoing
- results in: Phys.Lett. B772 (2017) 446-451, JHEP 1801 (2018) 070, arXiv:1804.11152

Outlook:
new level of precision in obtaining predictions for QCD observables (hard ME and PS follow the same TMD) for LHC and future colliders

Summary and Conclusions

- DGLAP evolution equation solved with Parton Branching method
- collinear PDFs and TMDs obtained
- different ordering definitions studied
- application of the TMDs to the Z boson p_{\perp}, a very good description of the 8 TeV data with angular ordering
- studies on comparison with Marchesini and Webber, KMR and CSS ongoing
- results in: Phys.Lett. B772 (2017) 446-451, JHEP 1801 (2018) 070, arXiv:1804.11152

Outlook:
new level of precision in obtaining predictions for QCD observables (hard ME and PS follow the same TMD) for LHC and future colliders

Thank you!

Backup

Cross check: Effect of ordering choice on collinear PDFs

$$
z_{M}=1-10^{5}, \alpha_{s}\left(1 \mu^{2}\right)
$$

As expected: collinear PDFs not affected by the ordering (if $z_{M} \approx 1$)

Application to Z boson p_{\perp} spectrum

MWR-ct10nlo and PB for quarks

replace $q_{\perp, c}$ with $q_{0} \rightarrow$ conditions for the z_{M} value:

- p_{\perp} - ordering: $\quad \mu^{2} 1 \quad=q_{\perp, c}^{2} \quad \rightarrow \quad z_{M}=$ fixed
 renormalization scale in α_{s} should be chosen to be q_{\perp}^{2}, rather than the evolution scale $\mu^{\prime 2}$ $\vec{k}_{\perp, a}=\vec{k}_{\perp, b}-\vec{q}_{\perp, c}$

$$
\begin{aligned}
& \widetilde{A}_{a}\left(x, k_{\perp}, \mu^{2}\right)=\Delta_{a}\left(\mu^{2}\right) \widetilde{A}_{a}\left(x, k_{\perp}, \mu_{0}^{2}\right)+ \\
& \left.\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{\mathrm{~d}^{2} \mu_{\perp}^{\prime}}{\pi \mu^{\prime 2}} \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu^{\prime 2}\right)} \int_{x}^{z_{M} \approx 1} \mathrm{~d} z P_{a b}^{R}\left(z, \mu^{\prime 2}, \alpha_{s}\left(1 \mu^{\prime 2}\right)\right) \widetilde{A}_{b}\left(\frac{x}{z}, k_{\perp}+a(z) \mu_{\perp}, \mu^{\prime 2}\right) \right\rvert\, \int \mathrm{d} k_{\perp}^{2}
\end{aligned}
$$

PB method: effect of every individual part of the ordering definition can be studied separately
replace $q_{\perp, c}$ with $q_{0} \rightarrow$ conditions for the z_{M} value:

- p_{\perp} - ordering: $\quad \mu^{2} 1 \quad=q_{\perp, c}^{2} \quad \rightarrow \quad z_{M}=$ fixed
 renormalization scale in α_{s} should be chosen to be q_{\perp}^{2}, rather than the evolution scale $\mu^{\prime 2}$ $\vec{k}_{\perp, a}=\vec{k}_{\perp, b}-\vec{q}_{\perp, c}$

$$
\begin{aligned}
& \widetilde{f}_{a}\left(x, \mu^{2}\right)=\widetilde{f}_{a}\left(x, \mu_{0}^{2}\right) \Delta_{a}\left(\mu^{2}\right) \\
+ & \int_{\ln \mu_{0}^{2}}^{\ln \mu^{2}} d \ln \mu^{\prime 2} \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu^{\prime 2}\right)} \sum_{b} \int_{x}^{z_{M}} d z P_{a b}^{R}\left(\mu^{\prime 2}, z\right) \widetilde{f}_{b}\left(\frac{x}{z}, \mu^{\prime 2}\right)
\end{aligned}
$$

PB method: effect of every individual part of the ordering definition can be studied separately collinear PDFs not affected by the ordering if $z_{M} \approx 1$ and $\alpha_{s}\left(\mu^{2}\right)$

Parton Branching (PB) method and Monte Carlo (MC) techniques

$$
\int_{\ln \mu_{0}^{2}}^{\ln \mu^{2}} d \ln \mu_{1}^{2} \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu_{1}^{2}\right)} \sum_{b} \int_{x}^{z_{M}} d z_{1} P_{a b}^{R}\left(\mu_{1}^{2}, z_{1}\right) \widetilde{f}_{b}\left(\frac{x}{z_{1}}, \mu_{0}^{2}\right) \Delta_{b}\left(\mu_{1}^{2}\right)
$$

Parton Branching (PB) method and Monte Carlo (MC) techniques

$$
\int_{\ln \mu_{0}^{2}}^{\ln \mu^{2}} d \ln \mu_{1}^{2} \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu_{1}^{2}\right)} \sum_{b} \int_{x}^{z_{M}} d z_{1} P_{a b}^{R}\left(\mu_{1}^{2}, z_{1}\right) \widetilde{f}_{b}\left(\frac{x}{z_{1}}, \mu_{0}^{2}\right) \Delta_{b}\left(\mu_{1}^{2}\right)
$$

$R_{1}, R_{2} \in[0,1]$ - uniformly distributed random numbers
probabilistic interpretation:

- generate $\mu_{1}^{2}: \Delta_{b}$:
if $\mu_{1}^{2}>\mu^{2}$ stop, otherwise splitting

Parton Branching (PB) method and Monte Carlo (MC) techniques

$$
\int_{\ln \mu_{0}^{2}}^{\ln \mu^{2}} d \ln \mu_{1}^{2} \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu_{1}^{2}\right)} \sum_{b} \int_{x}^{z_{M}} d z_{1} P_{a b}^{R}\left(\mu_{1}^{2}, z_{1}\right) \widetilde{f}_{b}\left(\frac{x}{z_{1}}, \mu_{0}^{2}\right) \Delta_{b}\left(\mu_{1}^{2}\right)
$$

$R_{1}, R_{2} \in[0,1]$ - uniformly distributed random numbers probabilistic interpretation:

- generate $\mu_{1}^{2}: \Delta_{b}$: if $\mu_{1}^{2}>\mu^{2}$ stop, otherwise splitting
- LO: decide $b \rightarrow b$ or $b \rightarrow a$ and generate $z_{1}: P_{a b}^{R}$

Parton Branching (PB) method and Monte Carlo (MC) techniques

$$
\int_{\ln \mu_{0}^{2}}^{\ln \mu^{2}} d \ln \mu_{1}^{2} \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu_{1}^{2}\right)} \sum_{b} \int_{x}^{z_{M}} d z_{1} P_{a b}^{R}\left(\mu_{1}^{2}, z_{1}\right) \widetilde{f}_{b}\left(\frac{x}{z_{1}}, \mu_{0}^{2}\right) \Delta_{b}\left(\mu_{1}^{2}\right)
$$

$R_{1}, R_{2} \in[0,1]$ - uniformly distributed random numbers probabilistic interpretation:

- generate $\mu_{1}^{2}: \Delta_{b}$: if $\mu_{1}^{2}>\mu^{2}$ stop, otherwise splitting
- LO: decide $b \rightarrow b$ or $b \rightarrow a$ and generate $z_{1}: P_{a b}^{R}$
- generate the next scale μ_{2}^{2} :
if $\mu_{2}^{2}>\mu^{2}$ stop, otherwise next splitting

Parton Branching (PB) method and Monte Carlo (MC) techniques

$$
\int_{\ln \mu_{0}^{2}}^{\ln \mu^{2}} d \ln \mu_{1}^{2} \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu_{1}^{2}\right)} \sum_{b} \int_{x}^{z_{M}} d z_{1} P_{a b}^{R}\left(\mu_{1}^{2}, z_{1}\right) \widetilde{f}_{b}\left(\frac{x}{z_{1}}, \mu_{0}^{2}\right) \Delta_{b}\left(\mu_{1}^{2}\right)
$$

$R_{1}, R_{2} \in[0,1]$ - uniformly distributed random numbers
probabilistic interpretation:

- generate $\mu_{1}^{2}: \Delta_{b}$: if $\mu_{1}^{2}>\mu^{2}$ stop, otherwise splitting
- LO: decide $b \rightarrow b$ or $b \rightarrow a$ and generate $z_{1}: P_{a b}^{R}$
- generate the next scale μ_{2}^{2} :
if $\mu_{2}^{2}>\mu^{2}$ stop, otherwise next splitting
Important:
$P_{a b}$ can be negative but $\int \mathrm{d} z P_{a b}>0$ - we can use the same method also at higher orders

The parameters of the initial parton density distributions have to be obtained from the fits to the experimental data \rightarrow xFitter

Fit to HERA σ_{r} data

The parameters of the initial parton density distributions have to be obtained from the fits to the experimental data \rightarrow xFitter

- kernel $K_{a}\left(x^{\prime \prime}, \mu^{2}\right)$ from evolution $\left(x_{0}=1-10^{-6}\right)$
- K_{a} folded with the starting distribution A_{0}

$$
\tilde{f}_{a}\left(x, \mu^{2}\right)=x \int \mathrm{~d} x^{\prime} \int \mathrm{d} x^{\prime \prime} A_{0}\left(x^{\prime}\right) K_{a}\left(x^{\prime \prime}, \mu^{2}\right) \delta\left(x^{\prime} x^{\prime \prime}-x\right)
$$

- $\widetilde{f}_{a}\left(x, \mu^{2}\right)$ convoluted with ME and fitted to data
- procedure repeated with different A_{0} until the minimal χ^{2} is found

Fit to HERA σ_{r} data

- data: HERA H1 and ZEUS combined DIS measurement [Eur.Phys.J. C75 (2015) no.12, 580]
- range: $3.5<Q^{2}<50000 \mathrm{GeV}^{2}, 4 \cdot 10^{-5}<x<0.65$
- systematic uncertainty: in the χ^{2} definition in xFitter
- experimental uncertainties: Hessian method in xFitter
- model uncertainties: variation of m_{c}, m_{b} and μ_{0}
- initial parametrization in a form of HERAPDF2.0
- d.o.f $=1131$

Fit to HERA σ_{r} data

- data: HERA H1 and ZEUS combined DIS measurement [Eur.Phys.J. C75 (2015) no.12, 580]
- range: $3.5<Q^{2}<50000 \mathrm{GeV}^{2}, 4 \cdot 10^{-5}<x<0.65$
- systematic uncertainty: in the χ^{2} definition in xFitter
- experimental uncertainties: Hessian method in xFitter
- model uncertainties: variation of m_{c}, m_{b} and μ_{0}
- initial parametrization in a form of HERAPDF2.0
- d.o.f $=1131$

Fit performed twice for angular ordering:

- $\alpha_{s}\left(\mu^{\prime 2}\right)$
(Set1): $\chi^{2} /($ d.o.f $) \approx 1.2$
- $\alpha_{s}\left((1-z)^{2} \mu^{\prime 2}\right)$
(Set2): $\chi^{2} /($ d.o.f $) \approx 1.2$

Set1: reproduces HERAPDF2.0
Set2: very different from HERAPDF2.0

