Initial PET Measurements for the SAFIR project

Christian Ritzer for the SAFIR collaboration
Outline

- The SAFIR Project
- Introduction to MRI & PET
- Testsetups for SAFIR and Measurement Results
- Summary & Outlook
The SAFIR Project

Small Animal = mice & rats
→ inner diameter 130 mm

Fast = PET image acquisition time <5 s
→ high activity (500 MBq)
→ low dead time

Insert = for Brucker BioSpec 70/30
→ 200 mm outer diameter
→ simultaneous image acquisition for MRI

Quantitative Kinetic Neuroimaging
The SAFIR Project

Small Animal = mice & rats
- inner diameter 130 mm

Fast = PET image acquisition time <5 s
- high activity (500 MBq)
- low dead time

Insert = for Brucker BioSpec 70/30
- 200 mm outer diameter
- simultaneous image acquisition for MRI

- Electronics compartment 1
- Sensor compartment
- Electronics compartment 2
- Cylindrical design
- 24 identical detector

Very fast PET insert to make unknown processes in the brain visible
Introduction to Magnetic Resonance Imaging

Basics:

- Based on nuclear magnetic resonance (NMR)
- Combined with spatial encoding

- 3 em-fields: B0 (7T & static)
 - Gradient fields (~100mT & dynamic)
 - HF (300MHz signal)
- Gradients to „distort“ the static field → spatical encoding
- Many sequences, but mainly sensitive to Water
Introduction to Positron Emission Tomography (PET)

Phantom or Animal

\[^{18}\text{F} \quad ^{15}\text{O} \quad ^{11}\text{C} \]

\[\text{CH}_2\text{OH} \quad \text{OH} \quad \text{OH} \quad \text{OH} \quad \text{OH} \]

Scintillator + SiPM

Signal Processing
Introduction to Positron Emission Tomography (PET)

\[e^+ - e^- \text{ annihilation} \rightarrow \text{photon pairs (511keV)} \]

lines between interactions form an image

\((^{18}\text{FDG}) = \text{sugar}\)
Combining PET & MRI

Advantages of PET
- Functional imaging
- High sensitivity

Advantages of MRI
- Anatomical imaging
- High spatial resolution
- Very good soft tissue contrast

Challanges
- MR-compatible electronics
 non-magnetic & no HF emission
- Spatial constraints for the detector

Weissler et al. 2015 (DOI 10.1109/TMI.2015.2427993)
Detection of Gamma Rays

Scintillator
- LYSO-crystals
 - decay time: ~42 ns
 - light output: ~30000 photons/MeV
 - rad length: ~1.15 cm
- crystal dimensions: 2.1×2.1×12 mm³
- 2.2 mm pitch
- 8x8 arrays, with one-to-one coupling

Photodetector
- Hamamatsu "MPPC", pixel size: 2×2 mm²
- Expected singles rate up to 10 kHz/mm²
Test Setup

Components
- 2 matrices with 2 SiPMs
- 16 channels of each SiPM are used
- 1 ASIC „PETA6“
- Power + Clock
- Some electronics for data transfer

Main objectives
- Understand the ASIC
- Obtain reference values for timing resolution & energy resolution
- Test calibration routines
- Verify analysis software
Measured Energy Spectrum

Energy resolution is limited by SiPM (intrinsic resolution is ~10% FWHM)

Photo peak (15.2% FWHM)

secondary peak (1275keV from 22Na)
Measured Coincidence Timing Spectrum

Difference of arrival times (227ps FWHM, from fit)

Timing resolution is limited by scintillation material
Comparison to Simulation

Red = Simulation
Black = Data

Good agreement, but Compton spectrum is different

(different data set)
Comparison to Simulation

Red = Simulation
Black = Data

Good agreement, systematically less events (-6%)
(structure due to source position)
(different data set)

Missalignment of source?
Towards a PET Insert

Improvements
- MR compatible!
- Many more readout channels 144 (432)
- Gigabit Fibre Connection (compared to USB2)
- Power converters → less input power

Main objectives
- Develop firmware for FPGA
- Verify MR compatibility
- Test synchronisation of boards
- Replicate results from simple setup
Energy Spectrum - Projection

One readout channel not working
Similar to the spectrum from the small setup slightly better energy resolution

Energy Spectrum

Photo peak (14.7% FWHM)
Summary & Outlook

- Basic detector concept works well
- Very good timing resolutions and fair energy resolution
- Firmware is currently under development + some improvements in the hardware
 (Boards are already tested in the MRI)
- Next up we will build the first ring with 12 boards
SAFIR collaboration

Institute for Particle Physics and Astrophysics, ETH Zürich, Switzerland:
Robert Becker, Volker Commichau, Diogo Di Calafiori, Günther Dissertori, Lubomir Djambazov, Jannis Fischer, Mikiko Ito, Parisa Khateri, Werner Lustermann, Christian Ritzer, Ulf Röser, Agnieszka Zagozdzinska-Bochenek

Clinic of Nuclear Medicine, University of Zürich, Switzerland:
Alfred Buck

Institute for Pharmacology and Toxicology, University of Zürich, Switzerland:
Afroditi Eleftheriou, Geoffrey Warnock, Bruno Weber, Matthias Wyss

Instituto de Fisica Corpuscular (CSIC-UV), Universitat de València, Spain
Josep F. Oliver

Institute for Biomedical Engineering, ETH Zürich, Switzerland
Markus Rudin

Department of Nuclear and Quantum Engineering, KAIST, South Korea
Jisoo Kim

Institute of Medical Technology, Otto-von-Guericke University Magdeburg, Germany
Paola Solevi

Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom
Charalampos Tsoumpas

Institute of Computer Engineering, University Heidelberg, Germany
Peter Fischer, Michael Ritzert, Ilaria Sacco (also at Stanford University)
Thank you for the attention!
Questions?