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Numerical Amplitudes Generation in OpenLoops

OpenLoops

Fully automated numerical algorithm for tree and one-loop amplitudes [Cascioli,

Lindert, Maierhöfer, Pozzorini]

hybrid tree-loop recursion ⇒ very high speed

NLO QCD and NLO EW corrections are fully implemented

• Mathematica for process generation and analytic/algebraic manipulation

• Fortan 90 for the numerical computation

• C++ and Phyton for the interfaces

Successful applications:

NLO calculations with up to O(105) loop diagrams/channel, e.g. pp→ tt̄+ 3 jets

used in several NNLO calculations e.g. (p p→ V1 V2, H H), Vi = γ, Z,W

interfaced to Montecarlos: Sherpa, Powheg, Herwig, Whizard, Munich, Matrix

Publicly available at openloops.hepforge.org
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Numerical Amplitudes Generation in OpenLoops

OpenLoops: Tree Level Algorithm
Tree level and one-loop amplitudes as sums of individual Feynman diagrams

Ml =
∑
d

M(d)
l , l = 0, 1

M(d)
l factorizes into a colour factor and a colour stripped amplitude

M(d)
l = C(d)

l A(d)
l

Each A(d)
0 is split into subtrees by cutting an internal line

wa wb for example

Numerical merging of subtrees performed recursively . Xα
βγ universal kernels

σa wa
= σa

wb

wc

⇒ wαa (ka, ha) =
Xα
βγ(kb, kc)

k2
a −m2

a

wβb (kb, hb)w
γ
c (kc, hc)
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Numerical Amplitudes Generation in OpenLoops

OpenLoops: One Loop Algorithm

Colour stripped one-loop amplitudes A(d)
1 : tensor coefficients × tensor integral

Ad1 =

∫
dDq

N (IN ; q)

D0D1 · · ·DN−1
=

N∑
r=0

Nµ1···µr

∫
dDq

qµ1 · · · qµr

D0D1 · · ·DN−1︸ ︷︷ ︸
fed to a tensor integral

reduction library

The Nµ1···µr are built numerically in recursive way:hybrid tree-loop recursion

Ad1 =

wN−1wN

w1 w2

D0

D1

D2

DN−1

q
loop is cut open−−−−−−−−−−→

wN

w1

βN

β0

Master Formula: Nβα (IN ; q) = Xβγδ(q)w
δ(iN )N γα (IN−1, q)

• Xβγδ(q) ∼ Feynman rules of the theory (full SM implemented)

• q dependence fully retained ⇒ Model and process independent algorithm
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Numerical Amplitudes Generation in OpenLoops

OpenLoops: One Loop Algorithm

Observation: numerator Nβα (IN ; q) factorizes into segments S(q, h) (h→ helicity)

[
Si(q, hi)

]βi
βi−1

≡ Xβiδβi−1
(q)wδi (hi)

⇒ segment= external subtree + 1-loop vertex + propagator

Nβα (IN ; q;h) =

 N∏
i=i

Si(q, hi)

β
α

=
[
S1(q, h1)

]β
β0

[
S1(q, h1)

]β0
β1
. . .
[
SN (q, hN )

]βN
α

e.g.: in the SM a segment is a q−polynomial of rank r ≤ 1

3-point segment
[
Si(q, hi)

]βi
βi−1

βi−1

wi

ki

Di

βi

=
[
Yσi + Zµ,σiq

µ
]βi
βi−1

w
σi
i (ki, hi)

4-point segment
[
Si(q, hi)

]βi
βi−1

βi−1

wi1
wi2

ki1
ki2

Di

βi

=
[
Yσ1,σ2

]βi
βi−1

wσ1i1 (ki1 , hi1 )wσ2i2 (ki2 , hi2 )
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Numerical Amplitudes Generation in OpenLoops

Flow of the Algorithm in OpenLoops1
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Numerical Amplitudes Generation in OpenLoops
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OpenLoops 2
on-the-fly Reduction
[F.B., Pozzorini, Zoller 1710.1145]

exploits factorization properties of OpenLoops recursion

performs on-the-fly integrand reduction during amplitude construction

keeps the rank ≤ 2 at any stage of the calculation
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OpenLoops2. On-the-fly Reduction

On-the-fly reduction of open loops
We exploit the factorization of N (q) into segments → integrand reduction

N (q)

D0D1 . . . DN1

=
S1(q)S2(q)

D0D1D2D3
×
∏N
i=3 Si(q)

D4 . . . DN−1
indipendent of future segments

Valid for ≥ 3-point function of rank r ≥ 2 [del Aguila, Pittau ’05]

qµqν =Aµν +Bµνλ qλ =
[
Aµν−1 +Aµν0 D0

]
+

Bµν−1,λ +
3∑
k=0

Bµνk,λDk

 qλ

• r = 2 monomials are reduced to r = 1 on-the-fly, i.e. at any OL construction step

⇒ complexity associated with high tensor remains always low!

• q−dependence reconstructed in terms of denominators⇒ pinched subtopologies

• qµ decomposed onto a basis of lightlike momenta lµi , i = 1, . . . , 4
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OpenLoops2. On-the-fly Reduction

Flow of the Algorithm in OpenLoops2
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OpenLoops2. On-the-fly Reduction

The OpenLoops Diagrams Merging

Partially constructed and helicity-summed

open loops are merged. Criteria:

same topology
{
D0, . . . , DN−1

}
same future segments Sn+1, . . . , SN

Recursive steps for Sn+1, . . . , SN only on the

merged object ⇒ # operations reduced

N (1)

e1 e2 e3

Dn

wn+1

Dn+1

wN

D0

+

N (2)

e1 e2 e3

Dn

wn+1

Dn+1

wN

D0

+

N (3)

e3 e1 e2

Dn

wn+1

Dn+1

wN

D0

+

N (4)

e3 e1 e2

Dn

wn+1

Dn+1

wN

D0





=

N

e1 e2 e3

Dn

wn+1

Dn+1

wN

D0

Merge all pinched and unpinched diagrams with same topology and future segments

N (1)

wn wn+1

Dn+1

wn+2 wN

N (2)

wn wn+1

Dn+1

wn+2 wN





−→
N

wn wn+1

Dn+1

wn+2 wN

• No extra cost for pinched topologies

• Significant efficiency improvement
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OpenLoops2. On-the-fly Reduction

Potential Problem n-2: Numerical Instabilities

qµqν = Aµν−1 +Aµν0 D0 +

Bµν−1,λ +
3∑
k=0

Bµνk,λDk

 qλ
qµ decomposed onto a basis of light-like momenta lµi computed out of external pµ1 , p

µ
2

lµ1 = pµ1 − α1p
µ
2 , lµ3 = v̄(l1)γµ

(
1− γ5

2

)
u(l2), l1,2 · l3,4 = 0

lµ2 = pµ2 − α2p
µ
1 , lµ4 = v̄(l2)γµ

(
1− γ5

2

)
u(l1), l1 · l2 = −

l3 · l4
4

qµ =
2

γ

(
(q · l2) lµ1 + (q · l1) lµ2

)
−

1

2γ

(
(q · l4) lµ3 + (q · l3) lµ4

)
, γ ∝ ∆(p1, p2)

⇒Aµν = γ−1aµν , Bµνi,λ = γ−2
[
b
(−2)
i,λ

]µν
+ γ−1

[
b
(−1)
i,λ

]µν

Spurious singularities for ∆(p1, p2)→ 0 ⇒ Severe numerical instabilities!
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OpenLoops2. On-the-fly Reduction

Solution to numerical instabilities

Box Reduction: avoid small rank-two Gram Determinant via the permutation

{D1, D2, D3} →
{
Di1 , Di2 , Di3

}
basis built out of only two momenta!

The criterion for the choice of the reduction basis is such that pi1 and pi2 give

|∆i1i2 |
Q4
i1i2

= max

{
|∆12|
Q4

12

,
|∆13|
Q4

13

,
|∆23|
Q4

23

}
, Q2

ij = max(|pi · pj |), i, j = 1, 2, 3.

Triangle Reduction: excluding IR regions, small ∆12 arise from topology like

p2
1 = −p2, p2

2 = −p2(1 + δ)

(p2 − p1)2 = 0

∆ =
p4

2
δ2, γ = −p2δ2

q

p1

q + p1

p2 − p1

q + p2
− p2

In this special configuration we use analytic integral reduction formulas.

If δ � 1 perform dedicated "all-orders" δ-expansions.
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Performances and Numerical Stability

Performances of OpenLoops2

Runtime per phase space point for the calculation of one-loop amplitudes.

t quarks and W± bosons are taken on-shell.

100

101

102

103

104

tO
L

2
o
n
−

th
e
−

fl
y

[m
s]

uu→ tt + n g

gg→ tt + n g

ud→W+g + n g

uu→W+W− + n g

101 102 103 104 105

number of loop diagrams

0.2

0.4

0.6

0.8

1.0

ra
ti

o

tOL2
on−the−fly/t

OL1
Collier

tOL2
Collier/t

OL1
Collier

Speed has been measured on

a single Intel i7-4790K core

with gfortran-4.8.5.

# of Feynman diagrams

ranges from O(1) to O(105)

OpenLoops2 is up to a factor 3 faster than OpenLoops1!
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Performances and Numerical Stability

Numerical Stability of OpenLoops2

Amin = log10

∣∣∣∣Wqp −Wdp

Wmin

∣∣∣∣ , Wmin = min
{
|Wdp|, |Wqp|

}
.

⇒ probability of relative accuracy A or less ∼ # of correct digits of dp evaluation

Wqp used as a benchmark has been obtained with OpenLoops + Cuttools.

? hard kinematics: pT > 50GeV and ∆Rij > 0.5 for final state QCD partons
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• Orders of magnitude improvements wrt Cuttools dp. Very significant wrt Collier

• Behavior in the tails crucial for real life applications
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Summary and Outlook

Summary

• new algorithm: construction + reduction of 1-loop amplitudes in one framework

• reduction of complexity at all stages of the calculation r ≤ 2

• it makes possible to perform dedicated stability studies

simple targeted expansions

permutation tricks in the reduction ⇒ excellent stability in hard regions

• code available in both double and quad precision. High speed up for the latter

Outlook

• Coming soon: new OpenLoops2 code release. Stay tuned!

• Implementation of adaptive "all-orders" ∆−expansions for full QP accuracy.

• first real life application to challenging pheno-projects: 2→ 5 @ NLO

• Investigations of IR/unresolved regions ⇒ numerical stability very promising

⇒ crucial for NNLO applications
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