Scattering Amplitudes with OpenLoops2

Federico Buccioni

in collaboration with

S. Pozzorini M. Zoller

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Physik-Institut, Universität Zürich, PhD Seminar 08.03.2018

Outline

- L Motivations. Scattering Amplitudes in Perturbation Theory
- II. Numerical Amplitudes Generation in OpenLoops
- III. OpenLoops2. On-the-fly Reduction
- IV. Performances and Numerical Stability
- V. Summary and Outlook

Cross Sections and Scattering Amplitudes

LO

NNLO

Need for Precision

Continuous improvements of statistics and experimental systematics at LHC

- \Rightarrow theoretical predictions in the SM must match the accuracy of the data
- \Rightarrow small deviations theory/data can open the door to BSM scenarios

Need for Precision

Continuous improvements of statistics and experimental systematics at LHC

- \Rightarrow theoretical predictions in the SM must match the accuracy of the data
- \Rightarrow small deviations theory/data can open the door to BSM scenarios
- \star Example: Higgs couplings relevant for BSM searches. Case study: $t\bar{t}H$ @ LHC.

 $t\bar{t}H$ in $H \rightarrow b\bar{b}$ channel depends critically on theory uncertainty of $t\bar{t}b\bar{b}$ background.

ξ

Need for Precision

Continuous improvements of statistics and experimental systematics at LHC

- \Rightarrow theoretical predictions in the SM must match the accuracy of the data
- \Rightarrow small deviations theory/data can open the door to BSM scenarios
- * Example: Higgs couplings relevant for BSM searches. Case study: $t\bar{t}H$ @ LHC.
- $t\bar{t}H$ in $H \rightarrow b\bar{b}$ channel depends critically on theory uncertainty of $t\bar{t}b\bar{b}$ background.

Need for Precision

Continuous improvements of statistics and experimental systematics at LHC

- \Rightarrow theoretical predictions in the SM must match the accuracy of the data
- \Rightarrow small deviations theory/data can open the door to BSM scenarios
- * Example: Higgs couplings relevant for BSM searches. Case study: $t\bar{t}H$ @ LHC.
- $t\bar{t}H$ in $H \rightarrow b\bar{b}$ channel depends critically on theory uncertainty of $t\bar{t}b\bar{b}$ background.

Scattering Amplitudes at Higher orders

Accurate theory predictions \equiv calculation of higher perturbative orders in α_s

- \Rightarrow LO is not enough!
- \Rightarrow NLO is absolutely necessary for reliable estimates of theory uncertainty.
- \Rightarrow NNLO required to match the exp. accuracy and test the convergence of the series

Already the complexity of 1-loop scattering amplitudes grows very fast

 \star e.g. $gg \to t \bar{t} b \bar{b}$ @ NLO $\sim \mathcal{O}(10^3)$ Feynman diagrams

Scattering Amplitudes at Higher orders

Accurate theory predictions \equiv calculation of higher perturbative orders in α_s

- \Rightarrow LO is not enough!
- \Rightarrow NLO is absolutely necessary for reliable estimates of theory uncertainty.

 \Rightarrow NNLO required to match the exp. accuracy and test the convergence of the series

Already the complexity of 1-loop scattering amplitudes grows very fast

 \star e.g. $gg \to t \bar{t} b \bar{b}$ @ NLO $\sim \mathcal{O}(10^3)$ Feynman diagrams

Automation of 1-loop Amplitudes

opened the door to huge variety of scattering processes at 1-loop

Scattering Amplitudes at Higher orders

Accurate theory predictions \equiv calculation of higher perturbative orders in α_s

- \Rightarrow LO is not enough!
- \Rightarrow NLO is absolutely necessary for reliable estimates of theory uncertainty.

 \Rightarrow NNLO required to match the exp. accuracy and test the convergence of the series

Already the complexity of 1-loop scattering amplitudes grows very fast

 \star e.g. $gg \to t \bar{t} b \bar{b}$ @ NLO $\sim \mathcal{O}(10^3)$ Feynman diagrams

Automation of 1-loop Amplitudes

opened the door to huge variety of scattering processes at 1-loop

Yet there are challenges

- Technical limitations for high particle multiplicity. Need for efficient generators
- NLO amplitudes in NNLO calculation: real emission

numerical stability challenging in deep IR regions

Scattering Amplitudes at Higher orders

Accurate theory predictions \equiv calculation of higher perturbative orders in α_s

- \Rightarrow LO is not enough!
- \Rightarrow NLO is absolutely necessary for reliable estimates of theory uncertainty.

 \Rightarrow NNLO required to match the exp. accuracy and test the convergence of the series

Already the complexity of 1-loop scattering amplitudes grows very fast

 \star e.g. $gg \to t \bar{t} b \bar{b}$ @ NLO $\sim \mathcal{O}(10^3)$ Feynman diagrams

Automation of 1-loop Amplitudes -

opened the door to huge variety of scattering processes at 1-loop

Yet there are challenges

- Technical limitations for high particle multiplicity. Need for efficient generators
- NLO amplitudes in NNLO calculation: real emission

OpenLoops

- Fully automated numerical algorithm for tree and one-loop amplitudes [Cascioli, Lindert. Maierhöfer. Pozzorini]
- hybrid tree-loop recursion \Rightarrow very high speed
- NLO QCD and NLO EW corrections are fully implemented
- Mathematica for process generation and analytic/algebraic manipulation
- Fortan 90 for the numerical computation
- C++ and Phyton for the interfaces

Successful applications:

- NLO calculations with up to $\mathcal{O}(10^5)$ loop diagrams/channel, e.g. $pp \rightarrow t\bar{t}+3$ jets
- used in several NNLO calculations e.g. $(p p \rightarrow V_1 V_2, H H)$, $V_i = \gamma, Z, W$
- interfaced to Montecarlos: Sherpa, Powheg, Herwig, Whizard, Munich, Matrix

Publicly available at openloops.hepforge.org

OpenLoops: Tree Level Algorithm

Tree level and one-loop amplitudes as sums of individual Feynman diagrams

$$\mathcal{M}_l = \sum_d \mathcal{M}_l^{(d)}, \quad l = 0, 1$$

 $\mathcal{M}_{l}^{(d)}$ factorizes into a colour factor and a colour stripped amplitude

 $\mathcal{M}_l^{(d)} = \mathcal{C}_l^{(d)} \, \mathcal{A}_l^{(d)}$

Each $\mathcal{A}_0^{(d)}$ is split into subtrees by cutting an internal line

Numerical merging of subtrees performed recursively . $X^{\alpha}_{\beta\gamma}$ universal kernels

$$\sigma_a \longleftarrow w_a = \omega_a \bigoplus w_b \Rightarrow w_a^{\alpha}(k_a, h_a) = \frac{X_{\beta\gamma}^{\alpha}(k_b, k_c)}{k_a^2 - m_a^2} w_b^{\beta}(k_b, h_b) w_c^{\gamma}(k_c, h_c)$$

OpenLoops: One Loop Algorithm

Colour stripped one-loop amplitudes $\mathcal{A}_1^{(d)}$: tensor coefficients imes tensor integral

$$\mathcal{A}_{1}^{d} = \int d^{D}q \frac{\mathcal{N}(\mathcal{I}_{N};q)}{D_{0}D_{1}\cdots D_{N-1}} = \sum_{r=0}^{N} \mathcal{N}_{\mu_{1}\cdots\mu_{r}} \underbrace{\int d^{D}q \frac{q^{\mu_{1}}\cdots q^{\mu_{r}}}{D_{0}D_{1}\cdots D_{N-1}}}_{P_{1}}$$

fed to a tensor integral reduction library

The $\mathcal{N}_{\mu_1\cdots\mu_r}$ are built numerically in recursive way: hybrid tree-loop recursion

Master Formula: $\mathcal{N}^{\beta}_{\alpha}(\mathcal{I}_N;q) = \mathcal{X}^{\beta}_{\gamma\delta}(q) \, w^{\delta}(i_N) \, \mathcal{N}^{\gamma}_{\alpha}(\mathcal{I}_{N-1},q)$

- $\mathcal{X}^{\beta}_{\gamma\delta}(q) \sim$ Feynman rules of the theory (full SM implemented)
- q dependence fully retained \Rightarrow Model and process independent algorithm

OpenLoops: One Loop Algorithm

Observation: numerator $\mathcal{N}^{\beta}_{\alpha}(\mathcal{I}_N;q)$ factorizes into segments $\mathcal{S}(q,h)$ $(h \to \text{helicity})$

$$\left[\mathcal{S}_{i}(q,h_{i})\right]_{\beta_{i-1}}^{\beta_{i}} \equiv \mathcal{X}_{\delta\beta_{i-1}}^{\beta_{i}}(q) \, w_{i}^{\delta}(h_{i})$$

 \Rightarrow segment = external subtree + 1-loop vertex + propagator

$$\mathcal{N}_{\alpha}^{\beta}(\mathcal{I}_{N};q;h) = \left[\prod_{i=i}^{N} \mathcal{S}_{i}(q,h_{i})\right]_{\alpha}^{\beta} = \left[\mathcal{S}_{1}(q,h_{1})\right]_{\beta_{0}}^{\beta} \left[\mathcal{S}_{1}(q,h_{1})\right]_{\beta_{1}}^{\beta_{0}} \dots \left[\mathcal{S}_{N}(q,h_{N})\right]_{\alpha}^{\beta_{N}}$$

e.g.: in the SM a segment is a $q-{\rm polynomial}$ of rank $r\leq 1$

3-point segment
$$[S_i(q,h_i)]_{\beta_{i-1}}^{\beta_i} = [\mathcal{Y}_{\sigma_i} + Z_{\mu,\sigma_i}q^{\mu}]_{\beta_{i-1}}^{\beta_i} w_i^{\sigma_i}(k_i,h_i)$$

4-point segment $[S_i(q,h_i)]_{\beta_{i-1}}^{\beta_i} = \frac{w_{i_1}}{\sum_{\beta_{i-1}} w_{i_2}} = [\mathcal{Y}_{\sigma_1,\sigma_2}]_{\beta_{i-1}}^{\beta_i} w_{i_1}^{\sigma_1}(k_{i_1},h_{i_1})w_{i_2}^{\sigma_2}(k_{i_2},h_{i_2})$

Flow of the Algorithm in OpenLoops1

 $\bigcirc \bigcirc \bigcirc \bigcirc \square$

[F.B., Pozzorini, Zoller 1710.1145]

- exploits factorization properties of OpenLoops recursion
- performs on-the-fly integrand reduction during amplitude construction
- \bullet keeps the rank \leq 2 at any stage of the calculation

On-the-fly reduction of open loops

We exploit the factorization of $\mathcal{N}(q)$ into segments ightarrow integrand reduction

$$\frac{\mathcal{N}(q)}{D_0 D_1 \dots D_{N_1}} = \frac{S_1(q) S_2(q)}{D_0 D_1 D_2 D_3} \times \frac{\prod_{i=3}^N S_i(q)}{D_4 \dots D_{N-1}} \qquad \text{indipendent of future segments}$$

Valid for $\geq 3\text{-point}$ function of rank $r\geq 2$ [del Aguila, Pittau '05]

$$q^{\mu}q^{\nu} = A^{\mu\nu} + B^{\mu\nu}_{\lambda} q^{\lambda} = \left[A^{\mu\nu}_{-1} + A^{\mu\nu}_{0} \mathbf{D_{0}}\right] + \left[B^{\mu\nu}_{-1,\lambda} + \sum_{k=0}^{3} B^{\mu\nu}_{k,\lambda} \mathbf{D_{k}}\right] q^{\lambda}$$

- r = 2 monomials are reduced to r = 1 on-the-fly, i.e. at any OL construction step
- \Rightarrow complexity associated with high tensor remains always low!
- q-dependence reconstructed in terms of denominators \Rightarrow pinched subtopologies
- q^{μ} decomposed onto a basis of lightlike momenta l_i^{μ} , $i = 1, \ldots, 4$

Flow of the Algorithm in OpenLoops2

rank remains small!

Potential Problem n-1: Huge proliferation of subtopologies

Example: start with a r = 4 pentagon \Rightarrow end up with 689 subtopologies

Potential Problem n-1: Huge proliferation of subtopologies

Example: start with a r = 4 pentagon \Rightarrow end up with 689 subtopologies

Solution: Diagrams Merging ~ Sophisticated diagrams bookkeeping

The OpenLoops Diagrams Merging

Partially constructed and helicity-summed open loops are merged. Criteria:

- same topology $\{D_0,\ldots,D_{N-1}\}$
- same future segments S_{n+1}, \ldots, S_N

Recursive steps for S_{n+1}, \ldots, S_N only on the merged object $\Rightarrow \#$ operations reduced

Merge all pinched and unpinched diagrams with same topology and future segments

- No extra cost for pinched topologies
- Significant efficiency improvement

Potential Problem n-2: Numerical Instabilities

$$q^{\mu}q^{\nu} = A^{\mu\nu}_{-1} + A^{\mu\nu}_{0}\mathbf{D_{0}} + \left[B^{\mu\nu}_{-1,\lambda} + \sum_{k=0}^{3} B^{\mu\nu}_{k,\lambda}\mathbf{D_{k}}\right]q^{\lambda}$$

 q^{μ} decomposed onto a basis of light-like momenta l^{μ}_i computed out of external p^{μ}_1 , p^{μ}_2

$$l_1^{\mu} = p_1^{\mu} - \alpha_1 p_2^{\mu}, \qquad l_3^{\mu} = \bar{v}(l_1)\gamma^{\mu} \left(\frac{1-\gamma^5}{2}\right) u(l_2), \qquad \qquad l_{1,2} \cdot l_{3,4} = 0$$
$$l_2^{\mu} = p_2^{\mu} - \alpha_2 p_1^{\mu}, \qquad l_4^{\mu} = \bar{v}(l_2)\gamma^{\mu} \left(\frac{1-\gamma^5}{2}\right) u(l_1), \qquad \qquad l_1 \cdot l_2 = -\frac{l_3 \cdot l_4}{4}$$

$$\begin{split} q^{\mu} &= \frac{2}{\gamma} \left(\left(q \cdot l_2 \right) l_1^{\mu} + \left(q \cdot l_1 \right) l_2^{\mu} \right) - \frac{1}{2\gamma} \left(\left(q \cdot l_4 \right) l_3^{\mu} + \left(q \cdot l_3 \right) l_4^{\mu} \right), \quad \gamma \propto \Delta(p_1, p_2) \\ \Rightarrow A^{\mu\nu} &= \gamma^{-1} a^{\mu\nu}, \quad B_{i,\lambda}^{\mu\nu} = \gamma^{-2} \left[b_{i,\lambda}^{(-2)} \right]^{\mu\nu} + \gamma^{-1} \left[b_{i,\lambda}^{(-1)} \right]^{\mu\nu} \end{split}$$

Spurious singularities for $\Delta(p_1, p_2) \rightarrow 0 \Rightarrow$ Severe numerical instabilities!

Solution to numerical instabilities

Box Reduction: avoid small rank-two Gram Determinant via the permutation

 $\{D_1, D_2, D_3\} \rightarrow \{D_{i_1}, D_{i_2}, D_{i_3}\}$ basis built out of only two momenta!

The criterion for the choice of the reduction basis is such that p_{i_1} and p_{i_2} give

$$\frac{|\Delta_{i_1i_2}|}{Q_{i_1i_2}^4} = \max\left\{\frac{|\Delta_{12}|}{Q_{12}^4}, \frac{|\Delta_{13}|}{Q_{13}^4}, \frac{|\Delta_{23}|}{Q_{23}^4}\right\}, \quad Q_{ij}^2 = \max(|p_i \cdot p_j|), \, i, j = 1, 2, 3.$$

Triangle Reduction: excluding IR regions, small Δ_{12} arise from topology like

In this special configuration we use analytic integral reduction formulas. If $\delta \ll 1$ perform dedicated "all-orders" δ -expansions.

Performances of OpenLoops2

Runtime per phase space point for the calculation of one-loop amplitudes.

t quarks and W^\pm bosons are taken on-shell.

OpenLoops2 is up to a factor 3 faster than OpenLoops1!

Numerical Stability of OpenLoops2

$$\mathcal{A}_{min} = \log_{10} \left| \frac{\mathcal{W}_{qp} - \mathcal{W}_{dp}}{\mathcal{W}_{min}} \right|, \quad \mathcal{W}_{min} = \min \left\{ |\mathcal{W}_{dp}|, |\mathcal{W}_{qp}| \right\}.$$

 \Rightarrow probability of relative accuracy \mathcal{A} or less \sim # of correct digits of dp evaluation \mathcal{W}_{qp} used as a benchmark has been obtained with OpenLoops + Cuttools. * hard kinematics: $p_T > 50 \ GeV$ and $\Delta R_{ij} > 0.5$ for final state QCD partons

• Orders of magnitude improvements wrt Cuttools dp. Very significant wrt Collier

• Behavior in the tails crucial for real life applications

Numerical Stability of OpenLoops2

$$\mathcal{A}_{min} = \log_{10} \left| \frac{\mathcal{W}_{qp} - \mathcal{W}_{dp}}{\mathcal{W}_{min}} \right|, \quad \mathcal{W}_{min} = \min \left\{ |\mathcal{W}_{dp}|, |\mathcal{W}_{qp}| \right\}.$$

⇒ probability of relative accuracy \mathcal{A} or less ~ # of correct digits of dp evaluation \mathcal{W}_{qp} used as a benchmark has been obtained with OpenLoops + Cuttools. * hard kinematics: $p_T > 50 \ GeV$ and $\Delta R_{ij} > 0.5$ for final state QCD partons

- Orders of magnitude improvements wrt Cuttools dp. Very significant wrt Collier
- Behavior in the tails crucial for real life applications

Summary and Outlook

Summary

- new algorithm: construction + reduction of 1-loop amplitudes in one framework
- \bullet reduction of complexity at all stages of the calculation $r\leq 2$
- it makes possible to perform dedicated stability studies
 - simple targeted expansions
 - \bullet permutation tricks in the reduction \Rightarrow excellent stability in hard regions
- code available in both double and quad precision. High speed up for the latter

Summary and Outlook

Summary

- new algorithm: construction + reduction of 1-loop amplitudes in one framework
- \bullet reduction of complexity at all stages of the calculation $r\leq 2$
- it makes possible to perform dedicated stability studies
 - simple targeted expansions
 - permutation tricks in the reduction \Rightarrow excellent stability in hard regions
- code available in both double and quad precision. High speed up for the latter **Outlook**
- Coming soon: new OpenLoops2 code release. Stay tuned!
- Implementation of adaptive "all-orders" Δ -expansions for full QP accuracy.
- \bullet first real life application to challenging pheno-projects: $2 \rightarrow 5$ @ NLO
- Investigations of IR/unresolved regions \Rightarrow numerical stability very promising
- \Rightarrow crucial for NNLO applications