Precise Simulations of Multi Bunches in High Intensity Cyclotrons

AMR in a particle accelerator framework

Matthias Frey

SNF project 200021_159936

08. March, 2018
Outline

1 Motivation
 - High Intensity Cyclotron
 - Neighbouring Bunch Effects
 - OPAL in a Nutshell (Slides by courtesy of A. Adelmann)
 - AMReX in a Nutshell

2 Challenges

3 Multigrid Poisson Solver

4 Outlook
Motivation
Cyclotron - High Intensity Cyclotron

High Intensity Cyclotron (PSI-Ring):
- particle: proton
- kin. energy: 72 - 590 MeV
- intensity: > 2 mA
 (record: 2.4 mA)
- power: > 1.2 MW
- RF Cavity freq.: 50.65 MHz

PSI Ring Cyclotron
(https://www.psi.ch/ltp/facilities)
Motivation

Cyclotron - Halo as Limiting Factor

- Process of halo creation and interactions need to be understood ...
- ... since halo leads to ...
 - particle losses
 - machine activation (> 4 MeV)
 - machine damage / shut down
 - machine intensity limitation
Motivation
Cyclotron - Beam Profile Measurement

- radial probes measure beam profiles
- turn separation decreases with energy
Motivation
Radial Profile Measurement (Thanks to J. Snuverink)
Motivation

- Neighbouring bunch effects occur in case of small turn separation for high intensity cyclotrons \(^1\)

Motivation

- Neighbouring bunch effects occur for small turn separation for high intensity cyclotrons.¹

Motivation

- **Requirements:**
 - Solving large-scale N-body problems of $O(10^9 \ldots 10^{10})$ particles coupled with Maxwell's equations
 - Particle-in-Cell with extremely fine mesh of $O(10^8 \ldots 10^9)$ grid points

- **Bottlenecks:**
 - Waste of memory and resolution in regions of void

- **Solution:**
 - Block-structured adaptive mesh-refinement
Tools

- **Software:**
 - OPAL (for physics)
 - AMReX (for grids, formerly: BoxLib) (https://ccse.lbl.gov/AMReX)
 - Trilinos (Amesos2, Belos, Ifpack2, MueLu, Tpetra) (https://trilinos.org/)

- **Hardware:**
 - Piz Daint at CSCS

Taken from https://www.cscs.ch/computers/piz-daint/
Tools - Top500 List November 2017

https://www.top500.org/list/2017/11/

<table>
<thead>
<tr>
<th>Rank</th>
<th>Site</th>
<th>System</th>
<th>Cores</th>
<th>Rmax (TFlop/s)</th>
<th>Rpeak (TFlop/s)</th>
<th>Power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>National Supercomputing Center in Wuxi, China</td>
<td>Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway NRPC</td>
<td>10,649,600</td>
<td>93,014.6</td>
<td>125,435.9</td>
<td>15,371</td>
</tr>
<tr>
<td>2</td>
<td>National Super Computer Center in Guangzhou, China</td>
<td>Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT</td>
<td>3,120,000</td>
<td>33,862.7</td>
<td>54,902.4</td>
<td>17,808</td>
</tr>
<tr>
<td>3</td>
<td>Swiss National Supercomputing Centre (CSCS), Switzerland</td>
<td>Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect, NVIDIA Tesla P100 Cray Inc.</td>
<td>361,760</td>
<td>19,590.0</td>
<td>25,326.3</td>
<td>2,272</td>
</tr>
<tr>
<td>4</td>
<td>Japan Agency for Marine-Earth Science and Technology, Japan</td>
<td>Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2 700Mhz ExaScaler</td>
<td>19,860,000</td>
<td>19,135.8</td>
<td>28,192.0</td>
<td>1,350</td>
</tr>
</tbody>
</table>
OPAL - Object Oriented Parallel Accelerator Library

https://gitlab.psi.ch/OPAL/src
OPAL V.2.0 in a Nutshell I

Slides by courtesy of A. Adelmann

OPAL is an open-source tool for charged-particle optics in large accelerator structures and beam lines including 3D space charge, particle matter interaction, partial GPU support and multi-objective optimisation.

- OPAL is built from the ground up as a parallel application exemplifying the fact that HPC (High Performance Computing) is the third leg of science, complementing theory and the experiment
- OPAL runs on your laptop as well as on the largest HPC clusters
- OPAL uses the MAD language with extensions
- OPAL is written in C++, uses design patterns, easy to extend
- Webpage: https://gitlab.psi.ch/OPAL/src.wikis/home
- the OPAL Discussion Forum: https://lists.web.psi.ch/mailman/listinfo/opal
- \(\mathcal{O}(40)\) users
Vlasov-Poisson Equation
Addressing the multi scale challenge (Slides by courtesy of A. Adelmann)

When neglecting collisions, and taking advantage of the electrostatic approximation, the Vlasov-Poisson equation describes the (time) evolution of the phase space \(f(x, v; t) > 0 \) when considering electromagnetic interaction with charged particles.

\[
\frac{df}{dt} = \frac{\partial f}{\partial t} + v \cdot \nabla_x f + \frac{q}{m} (E(x, t) + v \times B(x, t)) \cdot \nabla_v f = 0. \tag{1}
\]

Solving with ES-PIC
- Hockney and Eastwood, \(h_x(t), h_y(t), h_z(t), M = M_x \times M_y \times M_z \)
- SAAMG-PCG solver with geometry
- change \(M \) during simulation (many different field solver instances)
- change \(\Delta t \) adaptively
- modern computational architectures
Software Architecture

MPI based + HW accelerators + Optimiser (Slides by courtesy of A. Adelmann)
AMReX in a Nutshell

https://amrex-codes.github.io/

AMReX

A software framework for massively parallel, block-structured adaptive mesh refinement (AMR) applications

Enable Your Science With AMReX
AMReX in a Nutshell

https://amrex-codes.github.io/

- Massively parallel block-structured adaptive mesh refinement library
- Support for cell-centered, face-centered, edge-centered and nodal data
- MPI and hybrid MPI / OpenMP parallelization
AMReX in a Nutshell

Tagging - Mark a Cell for Refinement

- Coordinate space discretized by grid
AMReX in a Nutshell

Tagging - Mark a Cell for Refinement

- Coordinate space discretized by grid
- Mark cell for refinement according to some criteria:
 - charge density per cell
 - potential gradient
 - potential magnitude
 - etc.
AMReX in a Nutshell
Tagging - Mark a Cell for Refinement

- Generate level 1
AMReX in a Nutshell

Tagging - Mark a Cell for Refinement

- Generate level 1
- Mark cell for refinement according to some criteria:
 - charge density per cell
 - potential gradient
 - potential magnitude
 - etc.
AMReX in a Nutshell

Tagging - Mark a Cell for Refinement

- Generate level 2
AMReX in a Nutshell
Tagging - Mark a Cell for Refinement

- Generate level 2
- Maximum level reached (user-defined)
Programming Challenges

- Computation is optimized for
 - grids (AMReX)
 - particles (OPAL)
- Different parallelization (i.e., MPI) strategy
- AMReX and OPAL developed independently
 - Implementation of a lightweight interface (AMReX as black box)
- Runtime selection of tracking model in OPAL: AMR vs. non-AMR
 - Additional particle layout manager in OPAL
Multigrid Poisson Solver

- Solve Poisson’s equation

\[\Delta \phi(x, y, z) = -\frac{\rho}{\varepsilon_0} \]

\[\phi \left(r = \sqrt{x^2 + y^2 + z^2} \right) = \mathcal{O} \left(\frac{1}{r} \right) \quad \text{for} \quad r \to \infty, \]

with charge density \(\rho \), vacuum permittivity \(\varepsilon_0 \) and potential \(\phi \).

- Implementation of an AMR multigrid solver based on Cartwright’s algorithm\(^2\) with Open BC.

Multigrid Poisson Solver

V-cycle (residual correction formulation) Algorithm

1: function \textsc{relax}(l)
2: \hspace{1em} if \(l = l^{max} \) then
3: \hspace{2em} \(r^l \leftarrow \rho^l - \mathcal{L}\phi^l \)
4: \hspace{2em} (\(\mathcal{L} \): Laplace operator)
5: \hspace{1em} end if
6: \hspace{1em} if \(l > 0 \) then
7: \hspace{2em} \(\phi^{l,\text{save}} \leftarrow \phi^l \)
8: \hspace{2em} \(e^{l-1} \leftarrow 0 \)
9: \hspace{2em} \textsc{smooth}(e^l, r^l)
10: \hspace{2em} \phi^l \leftarrow \phi^l + e^l
11: \hspace{2em} r^{l-1} \leftarrow \mathcal{R}r^l \triangleright \text{restrict residual}
12: \hspace{2em} \textsc{relax}(l - 1)
13: \hspace{2em} e^l \leftarrow \mathcal{P}e^l \triangleright \text{prolongate error}
14: \hspace{2em} \delta e^l \leftarrow 0
15: \hspace{2em} \textsc{smooth}(\delta e^l, r^l)
16: \hspace{2em} e^l \leftarrow e^l + \delta e^l
17: \hspace{2em} \phi^l \leftarrow \phi^{l,\text{save}} + e^l
18: \hspace{1em} \text{else}
19: \hspace{2em} \text{solve } Ae^0 = r^0
20: \hspace{2em} \phi^0 \leftarrow \phi^0 + e^0
21: \hspace{1em} \text{end if}
22: \text{end function}
Multigrid Poisson Solver
Third-Party Library

- **Matrix/vector:** MPI-\(X\) (\(X =\) OpenMP, GPU, etc.) support via back end *Kokkos*\(^3\)
- **Post- and Pre-smoothing:** Gauss-Seidel, Jacobi (*Ifpack2*\(^4\))
- **Bottom solver:** Smoothed Aggregation Multigrid (*MueLu*\(^5,6\))

Test Setting

- 3 Gaussian sources (each 16'777'216 particles)
- base grid: 288^3
- max. grid: 24
 (\rightarrow max. 1728 cores on base level)
- #level of refinement: 2
- 10 solves (move each particle randomly within $[-0.001, 0.001]$ after every solve)
Strong Scaling
72 to 1728 cores (no hyperthreading) on Piz Daint
Example Plot: 10 bunches
Outlook

In progress ...

- first PSI-Ring tests were performed
- test solver with OpenMP / CUDA enabled
- submitting proposal to CSCS (deadline: 11. May) (request for node hours for large scale simulations)

Next steps ...

- profile peak matching (measurement vs. simulation)
- uncertainty quantification (beam and solver)
- large scale simulations
Thanks for your attention!