

Energy calibration for the GERDA experiment

C. Ransom

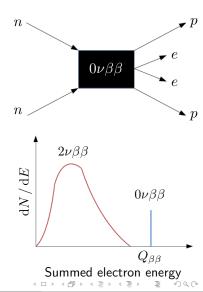
Zurich PhD seminar 2018

9 March 2018

Outline

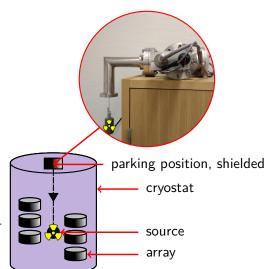
- Detecting neutrinoless double-beta decay $(0
 u\beta\beta)$
- GERDA and the calibration procedure
- Energy scale calibration and stability
- Determining resolution at $Q_{\beta\beta}$
- Future developments
- Conclusion

Detecting $0\nu\beta\beta$

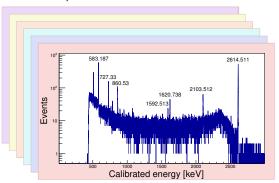

- Can explain mass of neutrino with small Majorana mass component
- Allows for $0\nu\beta\beta$ decay: hypothetical lepton number violating process
- Signature would be monoenergetic line, $Q_{\beta\beta}$, in energy spectrum of emitted electrons, 2039 keV for 76 Ge
- Sensitivity to half-life of decay:

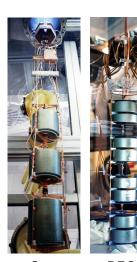
$$T_{1/2}^{0
u} \propto \epsilon \sqrt{\frac{Mt}{BI \cdot \Delta E}}$$

where ϵ : efficiency; Mt: exposure;


 ΔE : resolution

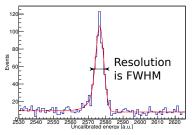
BI: background events per kg·yr·keV;


GERDA and the calibration procedure

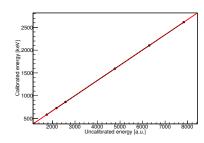

- Knowledge of energy scale, resolution vital for all physics analyses
- Detectors calibrated by ²²⁸Th sources ea. 7-10 days
- Three sources lowered to three positions from above cryostat for $\approx 2h$
 - ightarrow all detectors exposed
- Source Insertion System (SIS) built in Zurich
 - Operating reliably since 2011
 - \bullet Two independent measurement systems determine position of source to $\pm 1\,\mathrm{mm}$

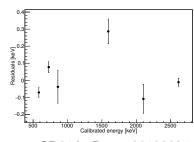
GERDA and the calibration procedure (cont.)

- 40 detectors, two main types: Semi-coaxial (Coax) and Broad Energy Germanium (BEGe)
- Germanium detectors have excellent resolution (~3 keV for Coax, ~4 keV for BEGe)



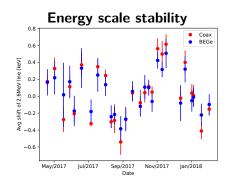
Coax

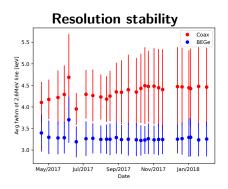

BEGe


Energy scale calibration

- GERDA calibration software identifies, fits peaks in spectra for each detector
- Calibration curves are linear fit between reconstructed and physical energy
- Range of peaks fitted between 583 keV and 2.6 MeV

Calibrated energy: 860 keV

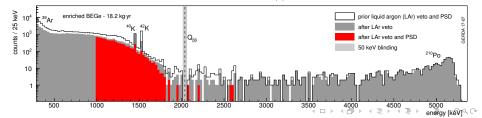




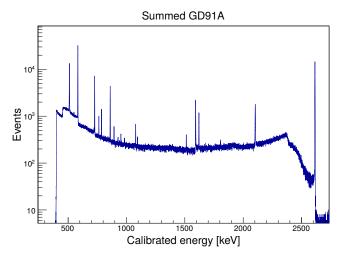
Detector: GD91A, Date: 20180224

Stability monitoring

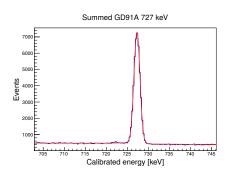
- ullet Energy scale stability required for combining of data between calibrations ullet stability should not limit resolution
- Stability of position, resolution of 2.6 MeV ²²⁸Th peak monitored calibration to calibration
- \bullet Shifts of 2.6 MeV peak usually $\lesssim 0.5\,\text{keV}$

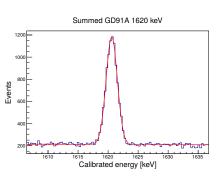

7 / 14

Resolution at $Q_{\beta\beta}$


Recall:

$$T_{1/2}^{0\nu} \propto \epsilon \sqrt{\frac{Mt}{BI \cdot \Delta E}}$$


- Sensitivity depends strongly on resolution
- Poor resolution would leak to $2\nu\beta\beta$ events leaking towards $Q_{\beta\beta}$
- Want to know resolution at $Q_{\beta\beta}$ in physics spectrum
- Procedure:
 - Combine many calibration spectra for each detector
 - Fit peaks, find resolution at each peak
 - Combine resolutions for each dataset, weighting by exposure
 - Fit resolution curve, interpolate to $Q_{\beta\beta}$



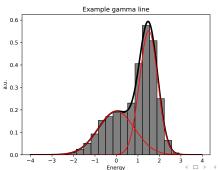
- Step 1: Combine calibration spectra for each detector
 - Easy! Simply add up all calibration spectra!

- Step 1: Combine calibration spectra for each detector √
- Step 2: Fit peaks, find resolution at each peak
 - Easy! Use existing calibration software, apply to combined spectra.

9 / 14

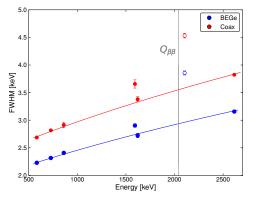
- Step 1: Combine calibration spectra for each detector √
- Step 2: Fit peaks, find resolution at each peak √
- Step 3: Combine resolutions for each dataset
 - Weight by exposure: how much a single detector contributes to physics spectrum for each dataset
 - Not so easy...

Resolution at $Q_{\beta\beta}$: Combining detector resolutions


• Combination of many Gaussians is a Gaussian mixture, so:

$$\sigma^2 = \Sigma_i w_i \left(\sigma_i^2 + \mu_i^2 \right) - \Sigma_i \left(w_i \cdot \mu_i \right)^2$$

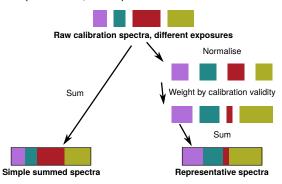
• Assume all means are equal (correctly calibrated peaks!):


$$\sigma^2 = \Sigma_i w_i \ \sigma_i^2$$

where Σ_i is sum over detectors, w_i is detector exposure, σ_i , μ_i are the resolutions / mean positions for each detector

- Step 1: Combine calibration spectra for each detector √
- Step 2: Fit peaks, find resolution at each peak ✓
- Step 3: Combine resolutions for each dataset, weighting by exposure
 - Use Gaussian mixture equation

- ullet Step 1: Combine calibration spectra for each detector \checkmark
- Step 2: Fit peaks, find resolution at each peak √
- Step 3: Combine resolutions for each dataset, weighting by exposure√
- Step 4: Fit resolution curve, interpolate to $Q_{\beta\beta}$
 - Empirically, fit equation: $FWHM(E) = \sqrt{aE + b}$
 - Doppler broadened single-escape peak is excluded


At $Q_{\beta\beta}=2039\,\text{keV}$

Coax FWHM: $3.55 \pm 0.02 \text{ keV}$

BEGe FWHM: $2.94 \pm 0.01 \text{ keV}$

Future developments

- Current method of simply adding spectra is not perfectly representative of physics data
 - Some calibrations are longer than others, exposure is not identical for each calibration
 - Calibrations are not applied for the same period of time
- New method (in development)

Future developments (cont.)

- Some complications:
- Not trivial to normalise
 - Detectors are different distances from sources
 - (Position of sources not perfectly reproduced each calibration)
 - Ratio of gamma line strengths will be different for each detector/calibration
 - One solution: create different normalised spectra for each gamma line?
- Not trivial to sum and fit
 - Poisson statistics must be treated correctly when adding events
- In future, could event combine spectra for multiple detectors for form dataset spectra

Conclusion

- GERDA searches for $0\nu\beta\beta$ of $^{76}{\rm Ge}$
- Regular calibrations are made with ²²⁸Th sources
- Energy scale and resolution of detectors monitored
- Resolution at $Q_{\beta\beta}$ is determined by combining calibration spectra and detectors
- New method will produce more representative spectra