CONTENTS

➤ Motivations

➤ MATRIX

➤ My PhD Project

➤ Conclusions
HEAVY QUARK PRODUCTION AT THE LHC
HEAVY QUARK PRODUCTION AT THE LHC

- **Heavy quark** → Top quark

 Third family quark, heaviest particle of the SM
HEAVY QUARK PRODUCTION AT THE LHC

➤ Heavy quark → Top quark
 Third family quark, heaviest particle of the SM

➤ Production → Pair production
 $t\bar{t}$ production is the main source of top quark events in the SM
HEAVY QUARK PRODUCTION AT THE LHC

➤ Heavy quark → Top quark
 Third family quark, heaviest particle of the SM

➤ Production → Pair production
 \(t\bar{t} \) production is the main source of top quark events in the SM

➤ **At the LHC** → Large Hadron Collider
 The world’s largest and most powerful particle collider
WHY TOP QUARK?
WHY TOP QUARK?

➤ Heaviest elementary particle known so far ($m_t \approx 173$ GeV)

Strong coupling with the Higgs Boson

Study of $t \bar{t}$ production can shed light on electroweak symmetry breaking mechanism
WHY TOP QUARK?

- Heaviest elementary particle known so far ($m_t \approx 173$ GeV)
 Strong coupling with the Higgs Boson
 Study of $t\bar{t}$ production can shed light on electroweak symmetry breaking mechanism

- Top quarks are abundantly produced at the LHC
 Its production is an important background both for NP model and SM precision measurements
 Experimental measurements require reliable predictions of $t\bar{t}$ production
MOST RECENT ATLAS PAPERS

<table>
<thead>
<tr>
<th>arXiv id</th>
<th>Observable</th>
<th>t(\bar{t}) background?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1802.08168</td>
<td>Missing Transverse Momentum</td>
<td>✔</td>
</tr>
<tr>
<td>1802.09572</td>
<td>t(\bar{t}) production</td>
<td>✔</td>
</tr>
<tr>
<td>1802.06572</td>
<td>H → cc</td>
<td>✔</td>
</tr>
<tr>
<td>1802.03388</td>
<td>H → ZX/XX → 4 (\ell)</td>
<td>✔</td>
</tr>
<tr>
<td>1802.03158</td>
<td>Supersymmetry</td>
<td>✔</td>
</tr>
<tr>
<td>1802.01840</td>
<td>Tetraquark</td>
<td>❌</td>
</tr>
<tr>
<td>1802.04146</td>
<td>H → γ γ</td>
<td>✔</td>
</tr>
<tr>
<td>1801.08769</td>
<td>q(\bar{q}) + γ or jet</td>
<td>✔</td>
</tr>
<tr>
<td>1801.07893</td>
<td>W′ → t b</td>
<td>✔</td>
</tr>
<tr>
<td>1801.06992</td>
<td>X → τ ν</td>
<td>✔</td>
</tr>
<tr>
<td>1801.02052</td>
<td>t(\bar{t}) production</td>
<td>✔</td>
</tr>
<tr>
<td>1712.08891</td>
<td>pp → t(\bar{t}) H</td>
<td>✔</td>
</tr>
</tbody>
</table>

…”

Zurich PhD Seminars, 09.03.18 - Simone Devoto
Most Recent ATLAS Papers

<table>
<thead>
<tr>
<th>arXiv id</th>
<th>Observable</th>
<th>$t\bar{t}$ background?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1802.08168</td>
<td>Missing Transverse Momentum</td>
<td>✔</td>
</tr>
<tr>
<td>1802.09572</td>
<td>$t\bar{t}$ production</td>
<td>✔</td>
</tr>
<tr>
<td>1802.06572</td>
<td>$H \rightarrow cc$</td>
<td>✔</td>
</tr>
<tr>
<td>1802.03388</td>
<td>$H \rightarrow ZX/XX \rightarrow 4\ell$</td>
<td>✔</td>
</tr>
<tr>
<td>1802.03158</td>
<td>Supersymmetry</td>
<td>✗</td>
</tr>
<tr>
<td>1801.06992</td>
<td>$X \rightarrow \tau\nu$</td>
<td>✔</td>
</tr>
<tr>
<td>1801.02052</td>
<td>$t\bar{t}$ production</td>
<td>✔</td>
</tr>
<tr>
<td>1712.08891</td>
<td>$pp \rightarrow t\bar{t}H$</td>
<td>✔</td>
</tr>
</tbody>
</table>

11/12 require theoretical prediction of $t\bar{t}$ production!
HOW DO WE DESCRIBE TOP PAIR PRODUCTION?

- Perturbation theory → Feynman diagrams
HOW DO WE DESCRIBE TOP PAIR PRODUCTION?

➤ Perturbation theory → Feynman diagrams

Leading Order (LO)

$LO \rightarrow \text{order of magnitude prediction}$
HOW DO WE DESCRIBE TOP PAIR PRODUCTION?

➤ Perturbation theory → Feynman diagrams

Next to Leading Order (NLO)

Two types of corrections:

➤ Real

➤ Virtual
HOW DO WE DESCRIBE TOP PAIR PRODUCTION?

➤ Perturbation theory → Feynman diagrams

Next to Next to Leading Order (NNLO)

Three types of corrections:

➤ Double real

➤ Single real at 1 loop

➤ 2 loop Virtual
HOW DO WE DESCRIBE TOP PAIR PRODUCTION?

➤ Perturbation theory → Feynman diagrams

Next to Next to Leading Order (NNLO)

Three types of corrections:

➤ Double real

➤ Single real at 1 loop

➤ 2 loop Virtual
HOW DO WE DESCRIBE TOP PAIR PRODUCTION?

➤ Perturbation theory → Feynman diagrams

Next to Next to Leading Order (NNLO)

Three types of corrections:

➤ Double real

➤ Single real at 1 loop

➤ 2 loop Virtual
HOW DO WE DESCRIBE TOP PAIR PRODUCTION?

➤ Perturbation theory → Feynman diagrams

Higher Orders (NLO - NNLO)

➤ They are necessary to obtain a reliable prediction
HOW DO WE DESCRIBE TOP PAIR PRODUCTION?

➤ Perturbation theory → Feynman diagrams

Higher Orders (NLO - NNLO)

➤ They are necessary to obtain a reliable prediction

QCD CORRECTIONS
They are challenging because of IR divergences!
WHY ARE QCD CORRECTIONS CHALLENGING?

Real

Virtual

\(q \rightarrow t \rightarrow g \rightarrow \bar{t} \)

\(\bar{q} \rightarrow t \rightarrow g \rightarrow q \)
WHY ARE QCD CORRECTIONS CHALLENGING?

Real

Virtual

IR Divergent

IR Divergent

Zurich PhD Seminars, 09.03.18 - Simone Devoto
WHY ARE QCD CORRECTIONS CHALLENGING?

Real

Virtual

IR Divergent

IR Divergent

IR divergences are guaranteed to cancel out for inclusive observables after summing real and virtual contributions (KLN Theorem)

Zurich PhD Seminars, 09.03.18 - Simone Devoto
WHY ARE QCD CORRECTIONS CHALLENGING?

Presence of IR divergences at intermediate steps of the computation of QCD higher order corrections does not allow a straightforward implementation of numerical techniques.
WHY ARE QCD CORRECTIONS CHALLENGING?

Presence of IR divergences at intermediate steps of the computation of QCD higher order corrections does not allow a straightforward implementation of numerical techniques.

SUBTRACTION METHODS
WHY ARE QCD CORRECTIONS CHALLENGING?

Presence of IR divergences at intermediate steps of the computation of QCD higher order corrections does not allow a straightforward implementation of numerical techniques.

\[
\sigma^{NLO} = \int d\sigma^{NLO} = \int_{m+1} d\sigma^R + \int_m d\sigma^V
\]

Divergent \hspace{2cm} Divergent
WHY ARE QCD CORRECTIONS CHALLENGING?

Presence of IR divergences at intermediate steps of the computation of QCD higher order corrections does not allow a straightforward implementation of numerical techniques.

SUBTRACTION METHODS

\[
\sigma^{NLO} = \int d\sigma^{NLO} = \int_{m+1} \left[d\sigma^R - d\sigma^{CT} \right] + \int_m \left[d\sigma^V + \int_1 d\sigma^{CT} \right]
\]

Divergent Divergent
WHY ARE QCD CORRECTIONS CHALLENGING?

Presence of IR divergences at intermediate steps of the computation of QCD higher order corrections does not allow a straightforward implementation of numerical techniques.

\[\sigma^{NLO} = \int d\sigma^{NLO} = \int_{m+1} \left[d\sigma^R - d\sigma^{CT} \right] + \int_m \left[d\sigma^V + \int_1 d\sigma^{CT} \right] \]

Convergent!

Convergent!

Divergent

Divergent

SUBTRACTION METHODS
WHY ARE QCD CORRECTIONS CHALLENGING?

Subtraction methods:

➢ NLO:

• *Catani-Seymour dipole subtraction* [S. Catani, M. Seymour (1996)]

• *FKS subtraction* [S. Frixione, Z. Kunszt, A. Signer (1996)]
WHY ARE QCD CORRECTIONS CHALLENGING?

Subtraction methods:

➤ **NLO:**

- *Catani-Seymour dipole subtraction* [S. Catani, M. Seymour (1996)]
- *FKS subtraction* [S. Frixione, Z. Kunszt, A. Signer (1996)]

➤ **NNLO:**

- *Colourful subtraction* [G. Somogyi, Z. Trocsanyi, V. Del Luca (2005)]
- *Antenna subtraction* [T. Gehrmann, A. Gehrmann-De Ridder, N. Glover (2005)]
- *Stripper formalism* [M. Czakon (2010); Boughezal et al (2011)]
- *q_T subtraction formalism* [S. Catani, M. Grazzini]
- *N-jettiness subtraction* [Boughezal, Focke, Liu, Petriello (2015); Gaunt, Stahlhofen, Tackmann, Walsh (2015)]
WHY ARE QCD CORRECTIONS CHALLENGING?

Subtraction methods:

➤ NLO:

• **Catani-Seymour dipole subtraction** [S. Catani, M. Seymour (1996)]

• **FKS subtraction** [S. Frixione, Z. Kunszt, A. Signer (1996)]

➤ NNLO:

• **Colourful subtraction** [G. Somogyi, Z. Trocsanyi, V. Del Luca (2005)]

• **Antenna subtraction** [T. Gehrmann, A. Gehrmann-De Ridder, N. Glover (2005)]

• **Stripper formalism** [M. Czakon (2010); Boughezal et al (2011)]

• **q_T subtraction formalism** [S. Catani, M. Grazzini]

• **N-jettiness subtraction** [Boughezal, Focke, Liu, Petriello (2015); Gaunt, Stahlhofen, Tackmann, Walsh (2015)]
MATRiX

Version: 1.0.0
Reference: arXiv:1711.06631

Munich — the MULTI-chanNeled Integrator at swiss (CH) precision —
Automates qT-subtraction and Resummation to Integrate X-sections

M. Grazzini (grazzini@physik.uzh.ch)
S. Kallweit (stefan.kallweit@cern.ch)
M. Wiesemann (marius.wiesemann@cern.ch)

MATRiX is based on a number of different computations and tools
from various people and groups. Please acknowledge their efforts
by citing the list of references which is created with every run.

MATRiX [arXiv 1711.06631]

Computational framework which allows us to evaluate fully differential cross sections for a wide class of processes at hadron colliders where the final state is a colour singlet in next-to-next-to-leading order (NNLO) QCD by using qT subtraction.

Zurich PhD Seminars, 09.03.18 - Simone Devoto
Computational framework which allows us to evaluate fully differential cross sections for a wide class of processes at hadron colliders where the final state is a colour singlet in next-to-next-to-leading order (NNLO) QCD by using q_T subtraction.
WHAT ABOUT $t\bar{t}$ PRODUCTION?

- The computational framework MATRIX simplifies the evaluation of fully differential cross sections for a wide range of processes at hadron colliders.
- It utilizes q_T subtraction to achieve next-to-next-to-leading order (NNLO) QCD accuracy.

MATRIX

Description:

Version: 1.0.0
Reference: arXiv:1711.06631

Munich — the MULTI-chAnnel Integrator at swiss (CH) precision — Automates q_T-subtraction and Resummation to Integrate X-sections

Authors:
- M. Grazzini
- S. Kallweit
- M. Wiesemann

MATRX is based on a number of different computations and tools from various people and groups. Please acknowledge their efforts by citing the list of references which is created with every run.

Type process_id to be compiled and created. Type "list" to show available processes. Try pressing TAB for auto-completion. Type "exit" or "quit" to stop.

<table>
<thead>
<tr>
<th>process_id</th>
<th>process</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pph21</td>
<td>$p p \to H$</td>
<td>on-shell Higgs production</td>
</tr>
<tr>
<td>ppz01</td>
<td>$p p \to Z$</td>
<td>on-shell Z production</td>
</tr>
<tr>
<td>ppw01</td>
<td>$p p \to W^+$</td>
<td>on-shell W^+ production with CRM</td>
</tr>
<tr>
<td>ppw01</td>
<td>$p p \to W^-$</td>
<td>on-shell W^- production with CRM</td>
</tr>
<tr>
<td>ppew02</td>
<td>$p p \to e^- e^+$</td>
<td>Z production with decay</td>
</tr>
<tr>
<td>ppew02</td>
<td>$p p \to e^+ e^-$</td>
<td>Z production with decay</td>
</tr>
<tr>
<td>ppew02</td>
<td>$p p \to e^- e^- e^+ e^+$</td>
<td>W^+ production with decay and CRM</td>
</tr>
<tr>
<td>ppew02</td>
<td>$p p \to e^- e^- e^- e^+$</td>
<td>W^- production with decay and CRM</td>
</tr>
<tr>
<td>ppew02</td>
<td>$p p \to e^- e^- e^+ e^-$</td>
<td>W^+ production with decay and CRM</td>
</tr>
<tr>
<td>ppew02</td>
<td>$p p \to e^- e^- e^- e^+$</td>
<td>W^- production with decay and CRM</td>
</tr>
<tr>
<td>ppew02</td>
<td>$p p \to e^- e^- e^- e^- e^+ e^-$</td>
<td>W^+ gamma production with decay</td>
</tr>
<tr>
<td>ppew02</td>
<td>$p p \to e^- e^- e^- e^- e^- e^+$</td>
<td>W^- gamma production with decay</td>
</tr>
<tr>
<td>ppew02</td>
<td>$p p \to e^- e^- e^- e^- e^- e^- e^-$</td>
<td>W^+ gamma production with decay</td>
</tr>
<tr>
<td>ppew02</td>
<td>$p p \to e^- e^- e^- e^- e^- e^- e^+ e^-$</td>
<td>W^- gamma production with decay</td>
</tr>
<tr>
<td>ppew02</td>
<td>$p p \to e^- e^- e^- e^- e^- e^- e^- e^+$</td>
<td>W^+ gamma production with decay</td>
</tr>
<tr>
<td>ppew02</td>
<td>$p p \to e^- e^- e^- e^- e^- e^- e^- e^- e^-$</td>
<td>W^- gamma production with decay</td>
</tr>
<tr>
<td>ppew02</td>
<td>$p p \to e^- e^- e^- e^- e^- e^- e^- e^- e^- e^+$</td>
<td>W^+ gamma production with decay</td>
</tr>
<tr>
<td>ppew02</td>
<td>$p p \to e^- e^- e^- e^- e^- e^- e^- e^- e^- e^- e^-$</td>
<td>W^- gamma production with decay</td>
</tr>
<tr>
<td>ppew02</td>
<td>$p p \to e^- e^- e^- e^- e^- e^- e^- e^- e^- e^- e^- e^+$</td>
<td>W^+ gamma production with decay</td>
</tr>
<tr>
<td>ppew02</td>
<td>$p p \to e^- e^- e^- e^- e^- e^- e^- e^- e^- e^- e^- e^- e^- e^+$</td>
<td>W^+ gamma production with decay</td>
</tr>
</tbody>
</table>

Zurich PhD Seminars, 09.03.18 - Simone Devoto
MY PhD PROJECT
MY PHD PROJECT

To compute the missing ingredient to implement $t\bar{t}$ production at NNLO in MATRIX
MY PHD PROJECT

To compute the missing ingredient to implement $t\bar{t}$ production at NNLO in MATRIX

Coloured final state \rightarrow QCD corrections also from the final state
To compute the missing ingredient to implement $t\bar{t}$ production at NNLO in MATRIX

Coloured final state → QCD corrections also from the final state
MY PHD PROJECT

To compute the missing ingredient to implement $t\bar{t}$ production at NNLO in MATRIX

Coloured final state → QCD corrections also from the final state
MY PHD PROJECT

To compute the missing ingredient to implement $t\bar{t}$ production at NNLO in MATRIX

Coloured final state \rightarrow QCD corrections also from the final state

\[q \rightarrow q \]
\[\bar{q} \rightarrow t \]
\[\bar{q} \rightarrow \bar{t} \]
WHAT IS Q_T SUBTRACTION?

q_T subtraction exploits the fact that the behaviour of the q_T distribution at small q_T has a universal structure known from transverse momentum resummation formalism to construct a process independent counterterm.

\[
d\sigma_{NNLO}^{\bar{Q}Q} = \mathcal{H}_{NNLO}^{\bar{Q}Q} \otimes d\sigma_{LO}^{\bar{Q}Q} + \left[d\sigma_{NLO}^{\bar{Q}Q+\text{jet}} - d\sigma_{NNLO}^{CT} \right]
\]
WHAT IS q_T SUBTRACTION?

q_T subtraction exploits the fact that the behaviour of the q_T distribution at small q_T has a universal structure known from transverse momentum resummation formalism to construct a process independent counterterm.

$$d\sigma_{NNLO}^{Q\bar{Q}} = \mathcal{H}_{NNLO}^{Q\bar{Q}} \otimes d\sigma_{LO}^{Q\bar{Q}} + \left[d\sigma_{NLO}^{Q\bar{Q}+\text{jet}} - d\sigma_{NNLO}^{CT} \right]$$

Can be computed with NLO subtraction techniques
WHAT IS q_T SUBTRACTION?

q_T subtraction exploits the fact that the behaviour of the q_T distribution at small q_T has a universal structure known from transverse momentum resummation formalism to construct a process independent counterterm.

$$d\sigma_{q\bar{q}}^{q\bar{q}}_{NNLO} = \mathcal{H}_{q\bar{q}}^{Q\bar{Q}}_{NNLO} \otimes d\sigma_{LO}^{Q\bar{Q}} + \left[d\sigma_{q\bar{q}}^{Q\bar{Q}+\text{jet}}_{NLO} - d\sigma_{q\bar{q}}^{CT}_{NLO} \right]$$

Can be computed with NLO subtraction techniques

IR behaviour known from studies in q_t resummation [arXiv:1408.4564; arXiv:1508.03585]

Zurich PhD Seminars, 09.03.18 - Simone Devoto
WHAT IS q_T SUBTRACTION?

q_T subtraction exploits the fact that the behaviour of the q_T distribution at small q_T has a universal structure known from transverse momentum resummation formalism to construct a process independent counterterm.

\[
d\sigma_{Q\bar{Q}}^{NNLO} = H_{Q\bar{Q}}^{NNLO} \otimes d\sigma_{LO}^{Q\bar{Q}} + \left[d\sigma_{Q\bar{Q}+\text{jet}}^{NLO} - d\sigma_{CT}^{NNLO} \right]
\]

HARD VIRTUAL COEFFICIENT

- Needs to be computed!

Can be computed with NLO subtraction techniques

IR behaviour known from studies in q_t resummation

WHAT DO I NEED TO COMPUTE?

To obtain this goal, one has to:

➤ Integrate the NNLO matrix elements for the real contribution in the soft limit (subtraction operator).

➤ Add them to the virtual contribution.

➤ Check the cancellation of the IR poles, keep the finite part.
WHAT DO I NEED TO COMPUTE?

Computation of the soft emission

Integration of the NNLO soft currents (eikonal currents)

We can distinguish between two classes of contribution:
WHAT DO I NEED TO COMPUTE?

Computation of the soft emission ➔ Integration of the NNLO soft currents (eikonal currents)

We can distinguish between two classes of contribution:

➤ proportional to the number of light quark flavours n_f;
WHAT DO I NEED TO COMPUTE?

Computation of the soft emission

Integration of the NNLO soft currents (eikonal currents)

We can distinguish between two classes of contribution:

➤ proportional to the number of light quark flavours n_f;

➤ not proportional to the number of light quark flavours n_f.
N\textsubscript{f} CONTRIBUTION

One has to consider:

➤ Soft quark pair production;

➤ NNLO contribution to single gluon emission;

➤ 2 loop contribution.
N_f CONTRIBUTION

One has to consider:

➤ Soft quark pair production;
➤ NNLO contribution to single gluon emission;
➤ 2 loop contribution.

We computed the missing terms and combined them together.

We observed a complete cancellation of the poles and we extracted the finite part.

Full result for the n_f contribution!
Nf CONTRIBUTION

Most tricky part: soft quark pair production.

Process: \[a_1(p_1^\mu) a_2(p_2^\mu) \rightarrow Q(p_3^\mu) \bar{Q}(p_4^\mu)[g \rightarrow q(q_1^\mu) \bar{q}(q_2^\mu)] \]

Soft Limit

\[
\left| \mathcal{M}_{a_1 a_2 \rightarrow Q \bar{Q} q \bar{q}} \right|^2 = (\alpha_0 \mu_0^{2 \epsilon}) q (4 \pi \alpha_0 \mu_0^{2 \epsilon})^2 \left\langle \mathcal{M}^{(0)} \right| J_\mu(k) \Pi^{\mu\nu}(q_1, q_2) J_\nu(k) \left| \mathcal{M}^{(0)} \right\rangle
\]

\[
k = q_1 + q_2 \quad J^\mu = T_i \frac{p_i^\mu}{p_i \cdot q} \quad \Pi^{\mu\nu}(q_1, q_2) = \frac{T_R}{(q_1 \cdot q_2)^2} (-g^{\mu\nu} q_1 \cdot q_2 + q_1^\mu q_2^\nu + q_1^\nu q_2^\mu)
\]

Need to compute:

\[
\int d^n q_1 \int d^n q_2 J_\mu(k) \Pi^{\mu\nu}(q_1, q_2) J_\nu(k)
\]
DOUBLE GLUON EMISSION

One has to consider:

➤ Double real contribution;
➤ Real - virtual contribution;
➤ 2 loop virtual contribution.
DOUBLE GLUON EMISSION

One has to consider:

➤ Double real contribution;
➤ Real - virtual contribution;
➤ 2 loop virtual contribution.

Current status:

We started the computation of the most tricky part, double real contribution (double gluon emission).
DOUBLE GLUON EMISSION

Process: \[a_1(p_1^\mu) a_2(p_2^\mu) \rightarrow Q(p_3^\mu) \bar{Q}(p_4^\mu) g(q_1^\mu) g(q_2^\mu) \]

Soft Limit

\[
J^{a_1 a_2}_{\mu \nu}(q_1, q_2) g^{\sigma \mu} g^{\rho \nu} J^{a_1 a_2}_{\sigma \rho}(q_1, q_2) = \frac{1}{2} \left\{ J^2(q_1), J^2(q_2) \right\} - C_A \sum_{i,j=1}^{n} T_i \cdot T_j S_{ij}(q_1, q_2)
\]

\[
S_{ij}(q_1, q_2) = S_{ij}^{m=0}(q_1, q_2) + \left(m_i^2 S_{ij}^{m\neq 0}(q_1, q_2) + m_j^2 S_{ji}^{m\neq 0}(q_1, q_2) \right)
\]

\[
\left| \mathcal{M}_{a_1 a_2 \rightarrow Q\bar{Q}gg} \right|^2 = (\alpha_0 \mu_0^2 \epsilon)^q (4\pi \alpha_0 \mu_0^2 \epsilon) \left\langle \mathcal{M}^{(0)} \right| J^{a_1 a_2}_{\mu \nu}(q_1, q_2) g^{\sigma \mu} g^{\rho \nu} J^{a_1 a_2}_{\sigma \rho}(q_1, q_2) \left| \mathcal{M}^{(0)} \right\rangle
\]

Need to compute:

\[
\int d^n q_1 \, d^n q_2 \, J^{a_1 a_2}_{\mu \nu}(q_1, q_2) g^{\sigma \mu} g^{\rho \nu} J^{a_1 a_2}_{\sigma \rho}(q_1, q_2)
\]

Zurich PhD Seminars, 09.03.18 - Simone Devoto
DOUBLE GLUON EMISSION

\[
S_{ij}^{m=0}(q_1, q_2) = \frac{1 - \epsilon}{(q_1 \cdot q_2)^2} \frac{p_i \cdot q_1 p_j \cdot q_2 + p_i \cdot q_2 p_j \cdot q_1}{p_i \cdot (q_1 + q_2) p_j \cdot (q_1 + q_2)} \\
- \frac{(p_i \cdot p_j)^2}{2 p_i \cdot q_1 p_j \cdot q_2 p_i \cdot q_2 p_j \cdot q_1} \left[2 - \frac{p_i \cdot q_1 p_j \cdot q_2 + p_i \cdot q_2 p_j \cdot q_1}{p_i \cdot (q_1 + q_2) p_j \cdot (q_1 + q_2)} \right] \\
+ \frac{p_i \cdot p_j}{2 q_1 \cdot q_2} \left[\frac{2}{p_i \cdot q_1 p_j \cdot q_2} + \frac{2}{p_j \cdot q_1 p_i \cdot q_2} \right] - \frac{1}{p_i \cdot (q_1 + q_2) p_j \cdot (q_1 + q_2)} \\
\times \left(4 + \frac{(p_i \cdot q_1 p_j \cdot q_2 + p_i \cdot q_2 p_j \cdot q_1)^2}{p_i \cdot q_1 p_j \cdot q_2 p_i \cdot q_2 p_j \cdot q_1} \right)
\]

\[
S_{ij}^{m\neq0}(q_1, q_2) = \frac{p_i \cdot p_j p_j \cdot (q_1 + q_2)}{2 p_i \cdot q_1 p_j \cdot q_2 p_i \cdot q_2 p_j \cdot q_1 p_i \cdot (q_1 + q_2)} \\
- \frac{1}{2 q_1 \cdot q_2 p_i \cdot (q_1 + q_2) p_j \cdot (q_1 + q_2)} \left(\frac{(p_j \cdot q_1)^2}{p_i \cdot q_1 p_j \cdot q_2} + \frac{(p_j \cdot q_2)^2}{p_i \cdot q_2 p_j \cdot q_1} \right)
\]
CONCLUSIONS

➢ What?

Computation of the hard virtual coefficient for $t\bar{t}$ production.

➢ Why?

To implement q_t subtraction for coloured final state.

➢ Done:

Computation of the n_f contribution

➢ To do:

Complete the computation for the double gluon emission contribution