First spectroscopy of the r-process nucleus ¹³⁵Sn

CERN-INTC-2018-008, INTC-P-539

Thorsten Kröll¹ / Kathrin Wimmer²

¹TU Darmstadt, Germany; ²Univ. of Tokyo, Japan; ³TU München, Germany; ⁴IEM CSIC, Madrid, Spain; ⁵Lunds Univ., Sweden; ⁶Univ. of Guelph, Canada; ⁷Univ. zu Köln, Germany; ⁸CERN, Genève, Switzerland; ⁹CSNSM, Orsay, France; ¹⁰Univ. of Sofia, Bulgaria; ¹¹Univ. of the West of Scotland, Paisley, UK; ¹²Univ. of Jyväskylä, Finland; ¹³Helsinki Institute of Physics, Finland; ¹⁴KU Leuven, Belgium; ¹⁵Univ. of Manchester, UK; ¹⁶UC Madrid, Spain

Work supported by BMBF (Nr. 05P15RDCIA), LOEWE / HIC for FAIR, and the MINIBALL-, T-REX- and HIE-ISOLDE collaborations

Region of Interest

Nuclei around doubly-magic shell closure in ¹³²Sn

- Letter of Intent: CERN-INTC-2010-045; INTC-I-111
- Approved Proposals: IS548, IS549, IS551 ... all Coulex (beam time 2016)

Higher energies from HIE-ISOLDE: first nucleon transfer ¹³⁴Sn(d,p)¹³⁵Sn

¹³⁵Sn – r-process nucleus

- r-process passes region around ¹³²Sn
- abundance pattern depends on both nuclear structure (m, β -T_{1/2}, σ (n), etc.) and astrophysical conditions

... August 2017: neutron star merger identified as (one) astrophysical site

¹³⁰Te

52

¹³¹Te

¹³²Te

¹³³Te

(d,p) is surrogate reaction for (n,γ)

¹³⁴Sn(n, γ) has no impact (¹³⁴Sb(n, γ) has!!!) ... but transfer to an even-even nucleus is theoretically easier ... contributes to the overall understanding of (d,p) in this region

Neutron capture rates can change average abundances by up to 43%

¹³⁵Te

¹³⁷Te

¹³⁶Te

¹³⁴Te

¹³⁹Te

- particle(2α)- γ coincidences
- γγ-coincidences, γ-branchings

Our approach: combine the best of both light-particle and γ -ray spectroscopy!!!

Set-up: MINIBALL and T-REX

¹³⁵Sn

Comparison 7.5 MeV/u and 10 MeV/u

10 MeV/u

TECHNISCHE

UNIVERSITÄT DARMSTADT

7 February 2018 | INTC Meeting | Thorsten Kröll | 8

Simulation (backward direction)

- Energies are well above experimental trigger threshold (≈500 keV @ 3 MeV/u and A=80 ... we have to see at 7.5 or 10 MeV/u and A=140)
- Levels are not sufficiently separated most likely we need γ-rays!!!

Physics aims

- Particle spectroscopy, particle-γ(γ) coincidences
 → identify excited states in ¹³⁵Sn for the first time
- (γ-gated) particle angular distributions
 → determine orbital angular momentum transfer
- γ-decay branching (and guidance by theory)
 → assign (tentatively) total angular momentum
- cross sections
 - ➔ extract spectroscopic factors
- ➔ Comparison with shell model

Note: shell model needs interaction matrix elements AND single-particle energies around ¹³²Sn, i.e. ¹³³Sn and ¹³³Sb

... predictive power can be evaluated only by studying nuclei beyond!!

Beam / rate estimate

MINIBALL + T-REX (maybe modified configuration in backward direction)

- Beam
 - molecular beam ¹³⁴Sn³⁴S⁺ from ISOLDE
 - beam energy from HIE-ISOLDE: 7.8 MeV/u (or whatever is reachable)
 - intensity on target 10⁴/s
 - highly contaminated by ¹³⁴Sb (A=168 contaminations?)
- Rate (1 mg/cm² CD₂ target)
 - 650 protons/day (per 1 mb)
 - 2-8 mb per state, 6-10 angular bins $\rightarrow \approx$ 300 counts / bin / day
 - ➔ 2% statistical error
 - γ -gated: factor 10-30 less $\Rightarrow \approx 150$ counts / bin / week
 - ➔ 10% statistical error
 - particle-integrated γ -rate per state $\Rightarrow \approx 350$ / mb / week
 - → the excitation energy can be determined even for very low cross sections

We request 24 shifts (8 days) of beam time

Simulation

¹³⁴Sn(d,p) @ 7.5 MeV/u Q₀ = 45.2 keV ¹³⁴Sb(d,p) @ 7.5 MeV/u Q₀ = 1516.5 keV

- States at high excitation energy in ¹³⁵Sb* partially overlap with states at low excitation energy in ¹³⁵Sn
- States at higher excitation energy are likely to emit γ-rays in coincidence (which are, of course, not detected with 100% efficiency)!

* For simplicity, the same excitation energies as in Sn have been assumed