First spectroscopy of the r-process nucleus ^{135}Sn

Thorsten Kröll1 / Kathrin Wimmer2

1TU Darmstadt, Germany; 2Univ. of Tokyo, Japan; 3TU München, Germany; 4IEM CSIC, Madrid, Spain; 5Lunds Univ., Sweden; 6Univ. of Guelph, Canada; 7Univ. zu Köln, Germany; 8CERN, Genève, Switzerland; 9CSNSM, Orsay, France; 10Univ. of Sofia, Bulgaria; 11Univ. of the West of Scotland, Paisley, UK; 12Univ. of Jyväskylä, Finland; 13Helsinki Institute of Physics, Finland; 14KU Leuven, Belgium; 15Univ. of Manchester, UK; 16UC Madrid, Spain

Work supported by BMBF (Nr. 05P15RDCIA), LOEWE / HIC for FAIR, and the MINIBALL-, T-REX- and HIE-ISOLDE collaborations
Region of Interest

Nuclei around doubly-magic shell closure in 132Sn
- Letter of Intent: CERN-INTC-2010-045; INTC-I-111
- Approved Proposals: IS548, IS549, IS551 ... all Coulex (beam time 2016)

Higher energies from HIE-ISOLDE: first nucleon transfer 134Sn(d,p)135Sn
\(^{135}\text{Sn} – \text{r-process nucleus}\)

- r-process passes region around \(^{132}\text{Sn}\)
- abundance pattern depends on both nuclear structure \((m, \beta-T_{1/2}, \sigma(n), \text{etc.})\) and astrophysical conditions
 ... August 2017: neutron star merger identified as (one) astrophysical site
- \((d,p)\) is surrogate reaction for \((n,\gamma)\)

Neutron capture rates can change average abundances by up to 43%

\(^{134}\text{Sn}(n,\gamma)\) has no impact (\(^{134}\text{Sb}(n,\gamma)\) has!!!)
... but transfer to an even-even nucleus is theoretically easier
... contributes to the overall understanding of \((d,p)\) in this region

\[\begin{array}{cccccccc}
 130 & 131 & 132 & 133 & 134 & 135 & 136 & 137 \\
 \text{Te} & \text{Te} \\
 129 & 130 & 131 & 132 & 133 & 134 & 135 & 136 \\
 \text{Sb} & \text{Sb} \\
 128 & 129 & 130 & 131 & 132 & 133 & 134 & 135 \\
 \text{Sn} & \text{Sn} \\
 127 & 126 & 126 & 126 & 126 & 126 & 126 & 126 \\
 \text{In} & \text{In} \\
 126 & 127 & 126 & 126 & 126 & 126 & 126 & 126 \\
 \text{Cd} & \text{Cd} \\
\end{array}\]

$^{133}\text{Sn} \ldots$ what has been done?

$^{132}\text{Sn}(d,p) @ 4.77 \text{ MeV/u}$

- particle spectroscopy only
- transferred $\Delta \ell$ determined (angular distributions are quite similar)
- SFs extracted

$^{133}\text{Sn} \ldots$ what has been done?

$^{132}\text{Sn}(^9\text{Be},^8\text{Be}) @ 3 \text{ MeV/u}$

- particle(2α)-γ coincidences
- $\gamma\gamma$-coincidences, γ-branchings

Our approach: combine the best of both light-particle and γ-ray spectroscopy!!!
Set-up: MINIBALL and T-REX

T-REX
- large solid angle
 - $8^\circ - 78^\circ$ and $102^\circ - 172^\circ$
- position sensitive
- PID (ΔE-E)

MINIBALL
- 24 HPGe
- $\epsilon \approx 3\% @ 1.3$ MeV

Shell model predictions

^{135}Sn

E(level)	J^π	$T_{1/2}$	$T_{1/2}$
0 | (7/2$^-$) | 515 ms | 5

7/2$^-$ | cwg | 0 | 7/2$^-$ | cw5082 | 0 | 7/2$^-$ | jj56pna | 0
Comparison 7.5 MeV/u and 10 MeV/u

- **7.5 MeV/u**
 - mostly larger cross section
 - less pronounced angular distributions
 - smaller energies of protons to be detected

- **10 MeV/u**
Simulation (backward direction)

\[^{134}\text{Sn}(d,p) \at 7.5 \text{ MeV/u, 1 mg/cm}^2 \text{ CD}_2 \text{ target}
\]

\[Q_0 = 45.2 \text{ keV, first 4 levels in } ^{135}\text{Sn}\]

- Energies are well above experimental trigger threshold (≈500 keV @ 3 MeV/u and A=80 ... we have to see at 7.5 or 10 MeV/u and A=140)
- Levels are not sufficiently separated most likely we need \(\gamma\)-rays!!!
Physics aims

- Particle spectroscopy, particle-γ(γ) coincidences
 ➔ identify excited states in 135Sn for the first time

- (γ-gated) particle angular distributions
 ➔ determine orbital angular momentum transfer

- γ-decay branching (and guidance by theory)
 ➔ assign (tentatively) total angular momentum

- cross sections
 ➔ extract spectroscopic factors

➔ Comparison with shell model

Note: shell model needs interaction matrix elements AND single-particle energies around 132Sn, i.e. 133Sn and 133Sb
... predictive power can be evaluated only by studying nuclei beyond!!
Beam / rate estimate

MINIBALL + T-REX (maybe modified configuration in backward direction)

- Beam
 - molecular beam 134Sn34S$^+$ from ISOLDE
 - beam energy from HIE-ISOLDE: 7.8 MeV/u (or whatever is reachable)
 - intensity on target 10^4/s
 - highly contaminated by 134Sb (A=168 contaminations?)

- Rate (1 mg/cm2 CD$_2$ target)
 - 650 protons/day (per 1 mb)
 - 2-8 mb per state, 6-10 angular bins $\Rightarrow \approx 300$ counts / bin / day
 \Rightarrow 2% statistical error
 - γ-gated: factor 10-30 less $\Rightarrow \approx 150$ counts / bin / week
 \Rightarrow 10% statistical error
 - particle-integrated γ-rate per state $\Rightarrow \approx 350$ / mb / week
 \Rightarrow the excitation energy can be determined even for very low cross sections

We request 24 shifts (8 days) of beam time
Simulation (forward direction)

Because of high energies, many p and d punch through both ΔE and E detectors.
Simulation

\[^{134}\text{Sn}(d,p) @ 7.5 \text{ MeV/u} \]
\[Q_0 = 45.2 \text{ keV} \]

\[^{134}\text{Sb}(d,p) @ 7.5 \text{ MeV/u} \]
\[Q_0 = 1516.5 \text{ keV} \]

- States at high excitation energy in \(^{135}\text{Sb}^*\) partially overlap with states at low excitation energy in \(^{135}\text{Sn}\)
- States at higher excitation energy are likely to emit \(\gamma\)-rays in coincidence (which are, of course, not detected with 100% efficiency)!

* For simplicity, the same excitation energies as in Sn have been assumed