Hyperfine interactions in hydrogenated TiO$_2$ thin films and powders for photocatalytic reactions

Dmitry Zyabkin 1

Juliana Schell2,3, Doru C. Lupascu3, Haraldur Pall Gunnlaugson4, Hilary Masenda5, Roberto Mantovan6, Krish-Baruth-Ram7,8, Sveinn Ólafsson9, Hafliði P. Gislason9, BingCui Qi9, Petko Krastev10, Joao Guilherme Martins Correia2,11, Ulrich Vetter1, Peter Schaaf1

1. Department of Materials for Electronics, Institute of Materials Science and Engineering, TU Ilmenau, Ilmenau, Germany
2. EP Department, ISOLDE-CERN, CH-1211 Geneva 23, Switzerland
3. Institute for Materials Science and Centre for Nanointegration, Duisburg-Essen (CENIDE),
4. Science Institute, University of Iceland, Dunhaga
5. School of Physics, University of the Witwatersrand, Johannesburg, 2050, South Africa
6. Laboratorio MDM, IMM-CNR, Via Olivetti 2, 20864, Agrate Brianza (MB), Italy
7. Durban University of Technology, Durban, 4000, South Africa.
8. School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4000, South Africa
9. Science Institute University of Iceland
10. Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72, 1784, Bulgaria
11. Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Portugal
Why study TiO$_2$:H?

TiO$_2$+ H$_2$ Plasma → Black TiO$_2$

Lots of defects (V$_{O}$, V$_{H}$, Ti)

- Absorption improved
- More electron-hole pairs
- Better performance?

Absorption

3 hours of H treatment

Pristine-TiO$_2$ H-TiO$_2$-30s H-TiO$_2$-1min H-TiO$_2$-3min H-TiO$_2$-5min H-TiO$_2$-20min
Why study TiO$_2$:H?

- doesn’t alter structure
- photocatalytic performance rates better
- defects (Ti$^{2+}$, Ti$^{3+}$ V$_o$, V$_H$)

Generation rates for methane and CO in the photocatalytic reduction of CO$_2$ with H$_2$O through H-TiO$_2$: H$_2$

Light absorption

TiO$_2$ \rightarrow H$_2$ 30 sec \rightarrow H$_2$ 1 min
Investigation of

- local defects induced with plasma in the nanostructured TiO$_2$ materials by PAC and eMS having a significant impact on the electron-hole recombination;
- dopants and H$_2$ interactions i.e. possibly leading to a “new” black TiO$_2$;
- charge transfer?
- defects evolution under various atmospheres and conditions.

OBJECTIVES

Sample production & characterisation (PVD, CVD, XPS, UV/Vis, TEMS, CEMS)

TU Ilmenau

TDPAC & eMS measurements

ISOLDE
PAC SPECTROSCOPY at ISOLDE

- 111mCd is used in doping of TiO$_2$ and only at ISOLDE
- Experience and sufficient amount of setups
- Interactions of Cd with V$_H$, V$_0$ and Ti defects
 - + no after-effect

How?

As a function of

- sample stoichiometry with different amount of defects H$_2$ annealing and measuring temperature from 450-700 K

Implantation depth at 30 keV is \sim 10-12 nm (111mCd in TiO$_2$)
Complement of the PAC study:

- Probe-host or probe-defect interaction
- Valence/(spin) state of probe atom \((X^{n+})\)
- In earlier work (2014)* Ti and Vo defects were probed

HOW?

As a function of

- Sample stoichiometry
- Annealing and measuring temperature

Implantation depth at 30 keV is \(~ 11-16\) nm \((^{57}\text{Mn in TiO}_2)\)

The eMS setups

The old setup:
• Limitations (such as temperatures, additional vibrations, long-sample-changing option)
• Complexity of extension for chemical experiments

The new setup:
• UV irradiation (laser 365 nm, 3B class)
• Better vibration isolation
• Less pumping time
• Compact & easy to assemble for a run
• Precise T-control
• Compatible with old cryo, magnetic lids
FEASIBILITY OF CURRENT PROPOSAL

eMS spectra of TiO$_2$:H-RT
TU Ilmenau/ISOLDE 2017

- Fe$^{2+}$ S=0 or S=2?
- Fe$^{3+}$?
- Does H act as an electronic donor?
- Leading to a charge transfer?

Fe$^{3+}$ + Ti$^{3+}$ \leftrightarrow Fe$^{2+}$ + Ti$^{4+}$?
TiO₂ pristine films (TDPAC)

Schell et al, JAP 121, 145302 (2017)

![Graph](image1.png)

\[^{111}\text{In}(^{111}\text{Cd}) \text{ in TiO}_2 \]

Rutile structure
\[\omega_0 \sim 100 \text{ Mrad/s} \]
and \[\eta \sim 0.1 \]

![Graph](image2.png)

\[^{111}\text{mCd}(^{111}\text{Cd}) \text{ in TiO}:\text{H}_2 \]

Rutile structure
\[\omega_0 \sim 100 \text{ Mrad/s} \]
and \[\eta \sim 0.2 \]
TU-Ilmenau/ISOLDE 2017

TiO₂ hydrogenated films (TDPAC)

Two local environments with static nuclear quadrupole interactions:

Site 1: well-defined frequency for Cd at the Ti-site with distortion caused by the presence of H atoms ($\eta \sim 0.5$).

Site 2: major fraction at 150°C and 200°C

Hydrogenation treatment with high frequency distribution. Higher EFG asymmetry in respect to site 1 ($\eta \sim 1$).
Mössbauer spectroscopy under light irradiation

Sample: CdS:57Fe(0.2%)

BEAM TIME REQUEST

Perturbed Angular Correlations Studies

<table>
<thead>
<tr>
<th>Required isotope</th>
<th>Implanted beam</th>
<th>Probe element</th>
<th>Type of experiment</th>
<th>Intensity [at/μC]</th>
<th>Target / Ion source</th>
<th>Atoms per sample</th>
<th>Ne of shifts</th>
</tr>
</thead>
<tbody>
<tr>
<td>111mCd (48 min)</td>
<td>111mCd</td>
<td>111Cd</td>
<td>γ-γ PAC</td>
<td>10^8</td>
<td>Molten Sn; plasma</td>
<td>2×10^{10}</td>
<td>3</td>
</tr>
</tbody>
</table>

Mössbauer studies

<table>
<thead>
<tr>
<th>57Mn (1.5 min) + TESTING of eMS</th>
<th>57Mn</th>
<th>57Fe</th>
<th>eMS</th>
<th>2×10^8</th>
<th>UCx, RILIS (Mn)</th>
<th>1×10^{12}</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
FUNDING INVOLVED

BMBF
Bundesministerium für Bildung und Forschung

Erforschung kondensierter Materie mit Großgeräten
Ausbau und Unterhalt der Einrichtungen an ISOLDE/CERN
Germany, contract: 5K16SI1
Thank you for your attention!
Similar frequency value (257 Mrad/s) in respect to the well-defined frequencies obtained with H:TiO$_2$ (300 Mrad/s), but since it had no H and the sample was a single crystal, it presents lower EFG asymmetry:

111mCd:TiO$_2$ Syngle Crystal

$\omega_0 \sim 257$ Mrad/s
and $\eta \sim 0$

Table 1 Hyperfine fitting parameters of PAC experiments performed in TiO$_2$ single crystals

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>T_M (K)</th>
<th>EFG</th>
<th>ω_0 (Mrad/s)</th>
<th>η</th>
<th>σ (Mrad/s)</th>
<th>Fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>implanted111mCd/Cd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>257(14)</td>
<td>0</td>
<td>0.175(12)</td>
<td>0(1)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>implanted111mCd/Cd + 111In/Cd</td>
<td>465</td>
<td>1</td>
<td>100.0(7)</td>
<td>0.15(2)</td>
<td>0.0(1)</td>
<td>12(2)</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td>182(2)</td>
<td>0.99(3)</td>
<td>15(2)</td>
<td>42(3)</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>295</td>
<td>1</td>
<td>99.01(16)</td>
<td>0.175(12)</td>
<td>0(1)</td>
<td>70</td>
</tr>
</tbody>
</table>

Cd can attract the vacancies according to partial pressure. The missing / attenuated fractions are likely due to multiple attracted vacancies (or charging / discharging vacancies) that alter the environment.
Additional information TDPAC

$^{111m}\text{Cd}^{(111\text{Cd})}$

- ^{111}In, $t_{1/2} = 2,8047\text{ d}$
- EC 99.99%
- ^{111m}Cd, $t_{1/2} = 48.54\text{ m}$

Levels and transitions:

- γ_1: 171 keV
- γ_2: 245 keV
- $\mu(5/2^+) = -0.766(3)\mu_N$
- $Q(5/2^-) = +0.74(8)\text{ b}$
- $A_{22}(^{111m}\text{Cd}) = 0.1786$
- $A_{22}(^{111}\text{In}) = -0.1782$

www.tu-ilmenau.de
$^{57}\text{Mn}/^{57}\text{Fe}$

$^{57}\text{Mn}^+ (T_{1/2} = 85.4 \text{ s})$

$^{57}\text{Co}^+ (T_{1/2} = 271.74 \text{ d})$

β^{-}

$I = \frac{5}{2}$

57^{*}Fe

136 keV (8.7 ns)

EC

$\langle E_r \rangle = 40 \text{ eV}$

$\frac{3}{2}$

57^{*}Fe

14.4 keV (97.8 ns)

γ - rays

$\frac{1}{2}$

57Fe

0