Nuclear moments and transition probabilities in the vicinity of the doubly magic ^{208}Pb by off-line measurements.

The case of ^{210}Pb.

1 ANU, Canberra, Australia; 2 CSNSM, Orsay, France; 3 ORNL, Oak Ridge, Tennessee, USA; 4 ELI-NP, Bucharest, Romania; 5 IKP, University of Cologne, Germany; 6 PTB, Braunschweig, Germany; 7 ISOLDE, CERN, Geneva, Switzerland; 8 St. Kliment Ohridski, University of Sofia, Bulgaria; 9 GANIL, Caen, France, 10 IPN, Orsay, France

Spokesperson(s): Andrew Stuchbery (Andrew.Stuchbery@anu.edu.au) and Georgi Georgiev (georgi.georgiev@csnsm.in2p3.fr)

Local contact: Liam Gaffney (liam.gaffney@cern.ch)
Shell closures, B(E2)’s and nuclear moments

- ^{208}Pb – accepted as robust doubly-magic nucleus while ^{16}O and ^{40}Ca are soft towards particle-hole excitations

- Energies – good indicators, reproduced by the theories, but not strongly dependent on the interactions

- Transition probabilities (B(E2)’s) – first order test to the theories

- Nuclear magnetic moments (μ) – the real measure of the purity of the wave functions!

- Combined $B(E2)$ and μ - the ultimate experimental test – still missing data for 2^+ states close to ^{208}Pb!
Doubly-magic + 2 nucleons

- Nuclei with 2 nucleons outside doubly-magic core – a test for basic shell-model assumptions.

- Low-excitation states – used to determine two-body residual interactions \(\approx \) Recoupling of the spins of pure \(j^2 \) configuration.

- Transition probabilities for a simple \(j^2 \) configuration:

\[
B(E2; J_i \rightarrow J_i - 2) = 4(2J_i - 3) \left\{ \frac{j}{J_i} \left(\frac{J_i - 2}{2} \right)^2 \right\} |\langle j \| T(E2) \| j \rangle|^2
\]

- Magnetic moments: \(g(J) = g(j) \) – identical \(g \) factors for all states in the multiplet
Some discrepancies for the B(E2) of the 2^+ states in 18O and 92Zr

- **B(E2) of 2^+ in 210Pb** – a measurement from 50 years ago with big error bar. Lower than expected value.

- *g* factors of single-particle states (*odd-mass nuclei*) – very close to the Schmidt limits

- *g* factors of 2^+ states in 18O, 42Ca and 92Zr ⇒ strong collective contributions

- *g*(2$^+$) 210Pb – single-particle? *How pure???
The aim of the present experiment is to:

- Determine the transition probabilities (B(E2)) for the 2\(^+\) and 4\(^+\) states in \(^{210}\)Pb (< 5% accuracy)
- Measure the \(g\) factor of the 2\(^+\) state in \(^{210}\)Pb with \(\sim 5\%\) accuracy
Experimental approach

- Post-accelerated (~5 MeV/u) \(^{210}\text{Pb}\) (\(T_{1/2} = 22\text{y}\)) beam → no protons required, any “old” ISOLDE target can be used
- \(B(E2)\) – from Coulomb excitation (normalization to target excitation &/or Rutherford)
- \(g\) factor – from Recoil In Vacuum (RIV) measurement

Miniball plunger:
- used to define the electron – ion interaction time.
- \(g\)-factor sensitive distances ~ 1 – 5 ps.
- Plunger lifetime information – complementary to the Coulex \(B(E2)\) value
Plunger details

- **target** – any “good plunger material” between Mg (Z=12) and Ni (Z=28)
- **stopper** – high-Z material (e.g. Au) – sufficiently thick to stop the ^{210}Pb beam and thin enough to let the recoiling target nuclei go through
- **independent target** (^{120}Sn) \rightarrow for the B(E2) of the 4^+ state
- CD angular coverage – 14° – 40°
- count-rate calculations (assuming ^{58}Ni target and 2×10^5 pps ^{210}Pb beam):
 - 3200 γ’s per day in the $2^+ \rightarrow 0^+$ transition
 - 60 γ’s per day in the $4^+ \rightarrow 2^+$ transition
 - **5 plunger distances** needed – for the RIV measurement
- ^{120}Sn target and 2×10^5 pps ^{210}Pb beam \rightarrow 340 γ’s per day in the $4^+ \rightarrow 2^+$ transition
Beam-time request

- **NO proton beam requested!!**

- **15 UT's** (5 days) of 5 MeV/u 210Pb beam for measuring the $B(E2)$ and the g factor of its 2^+ state

- **3 UT's** (1 day) for measuring the $B(E2)$ of its 4^+ state

- **12 UT's** (4 days) of 207Pb beam (e.g. from mass marker) for calibration of the RIV interaction

- **Standard 22Ne run** – for determining the position of the Miniball detectors (overnight)

\rightarrow 30 UT’s off-line run requested