

UNIVERSIDAD DE GRANADA

PROPOSAL Measurement of the ³⁵Cl(*n*,γ) cross section at n_TOF EAR1

I. Porras¹, T. Wright², S. Bennett², F. Ogállar^{1,3}, J. Praena¹, M. Sabaté-Gilarte³, P. Torres-Sánchez¹, F. Arias de Saavedra¹, C. Lederer-Woods⁴, S.J. Lonsdale⁴, R. Garg⁴, M. Dietz⁴ and the n_TOF Collaboration.

¹Universidad de Granada, Spain ²University of Manchester, UK ³European Organization for Nuclear Research, Switzerland ⁴University of Edinburgh, UK

- Motivations
- Status of data
- Setup proposed and counting rate estimations
- Request of protons

Dual interest: Health and Environment

• 1. Boron Neutron Capture Therapy

CI present in brain and in skin at 0.3%. Important for dose calculations in healthy tissue

• 2. Nuclear power plants

CI present in the materials of the reactor Important for criticality calculations and waste repositories

75% of CI is ³⁵CI, its capture cross section is so large (44 b. at thermal) that even at low concentrations its activation is important.

I. Porras, Universidad de Granada, Spain

1. Boron Neutron Capture Therapy (BNCT)

BNCT: an effective one-day treatment

BNCT: unique RT option for infiltrative tumors

BNCT: promising therapy for brain tumors

Outcome of BNCT Osaka clinical trial for 21 brain tumor patients, combined with X-Ray Conventional Radiotherapy, and compared to standard treatments

S. Kawabata, S-I. Miyatake, T. Kuroiwa et al.,

J. Radiat. Res. 50, 51-60 (2009).

BNCT: promising therapy for brain tumors

Outcome of BNCT Osaka clinical trial for 21 brain tumor patients, combined with X-Ray Conventional Radiotherapy, and compared to standard treatments

S. Kawabata, S-I. Miyatake, T. Kuroiwa et al., J. Radiat. Res. 50, 51-60 (2009).

Can we optimize the treatment further?

Outcome of BNCT Finnish trial for 22 brain tumor patients (Glioblastoma) depending on dose delivered on Planning Tumor Volume

L. Kankaanranta, T. Seppala, H. Koivunoro et al., Int. J. Radiat. Oncol. Biol. Phys. 80, 369-376 (2011).

A more precise dose calculation (includes improving all cross sections) could lead to optimize treatment time

⇒ Better
 therapeutic
 outcome and
 possibly
 survival

Most important processes contributing to dose in brain (healthy tissue)

Energy range of interest: thermal to 100 keV

Spectrum of the main neutron beams for BNCT

I. Auterinen, T. Serén, K. Anttila et al., Applied Radiation and Isotopes 61 (2004) 1021–1026

2. Nuclear fission reactors

• ³⁵Cl is present in:

- Polyvinyl chloride pipes (is 57% Cl by weight)
- R. O. Sayer, K. H. Guber, L. C. Leal, Phys. Rev. C73, 044603 (2006)
- Chlorides are impurities in fuel cladding. IAEA-TECDOC-927: Influence of water chemistry on fuel cladding behaviour
- Cl in nuclear grade graphites (purification processes). LLWR Environmental Safety Case: Cl-36 Mobility in Reactor Circuits and its Potential Significance for the ESC 2011 Inventory, LLWRP 1106: SERCO/E003756/008

³⁶Cl is produced in fission reactors by ³⁵Cl(n,γ) capture

Motivations

RESEARCH PROFILES

Detection of ³⁶Cl in nuclear reactor waste

When most people think of radioactive waste, elements such as uranium, plutonium, or even americium come to mind. Very few would immediately name chlorine as a problematic element for radioactive waste disposal. But one of

chlorine's radioactive isotopes, ³⁶Cl, has a particularly long half-life (hundreds of thousands of years) and is extremely water-soluble, making it a potential longterm threat to the environment if it is not disposed of properly. For ³⁶Cl content to be determined accurately, it must first be separated from its matrix and from other radionuclides, which can be a difficult task if the ³⁶Cl is embedded in the components of a nuclear reactor. In the April 15 issue of Analytical Chemistry (pp 3126-3134), Xiaolin Hou and colleagues at the Technical University of Denmark present a new set of methnormal waste, it will be quite cheap," says Hou.

Of the materials tested in this paper, only graphite has a previously reported method for extraction of ³⁶Cl. In that case, the chloride was leached from the

When this nuclear reactor is decommissioned, Hou and colleagues' methods could help authorities safely dispose of the construction materials.

alkali fusion at high temperatures with NaOH and Na_2CO_3 to a fused cake, which is then leached with water to extract the chloride.

For all the materials, the solutions containing the chloride are precipitated

as AgCl. At this point, the scientists faced another challenge. Hou explains, "In most papers, they do the measurement of the ³⁶Cl by just dissolving the silver chloride in a very high concentration of ammonium solution and then doing the measurements, but ... if the chloride content is high, you need quite a lot of ammonium to dissolve it." In addition, the dissolved silver is not very stable over the time period necessary for the liquid scintillation counting process and tends to precipitate. "If there are particles formed in the solution, it will change the counting efficiency so you cannot get a very good result," says Hou.

Cl is a major concern in radioactive waste due to:

- Half-life of 301000 y.
- High mobility (extremely water soluble)

Motivations

Nuclear Science	Science ISBN 978-92-64-99072-2 E. Leclerc, G. Smith and P. Lloyd Review of Cl-36 behaviour in the biosphere and implications for long-term dose assessment Instance	
		• Cl-36 inventories in low and intermediate level waste stores are of interest to ANDRA because Cl-36 contributes 77% (5.7E-3 mSv/y) of the peak dose at Centre de l'Aube.
	Mobile Fission and Activation Products in Nuclear Waste Disposal	• The JGC Corporation in Japan are concerned with Cl-36 issues in Low and Intermediate Level Waste because Cl-36 is assessed to be the major contributor to dose following disposal of this waste, assumed to arise due to use of river water

for irrigation.

Workshop Proceedings La Baule, France 16-19 January 2007

> OECD 2009 NEA No. 6310

In order to accurately predict the amount of ³⁶Cl in irradiated fuel, the ³⁵Cl(n, γ) cross section must be known to a high level of accuracy

thermal to ~ 1 MeV

Status of data

Evaluations

Incident neutron data / / CI35 / MT=102 : (z,y) / Cross section

Uncertainties of 10% between evaluations:

too much for precise estimation of ³⁶CI production inside the reactor core.

EXFOR

Only one capture measurement in resonances:

K. H. Guber, R. O. Sayer, T. E. Valentine, et al, Phys. Rev. C 65, 058801 (2002)

Discrepances in the measurement at thermal point

All measurements with nat Cl (75% ³⁵Cl, 25% ³⁷Cl)

We propose the first measurement with pure 35Cl

ENDF: Use bound state to fit the thermal value of Mughabghab. -75 eV to -180 eV reported from different authors, different possibilities for low energy behaviour thermal point

ENDF: Use bound state to fit the thermal value of Mughabghab. -75 eV to -180 eV reported from different authors, different possibilities for low energy behaviour thermal point

Has this any impact on BNCT dose delivered to brain?

MC Simulations for Snyder head model with different cross section

ENDF: Use bound state to fit the thermal value of Mughabghab. -75 eV to -180 eV reported from different authors, different possibilities for low energy behaviour thermal point

100 44 b Has this any impact on 30 b Cross section estimations ___10 7 b BNCT dose delivered to brain? 1 upper bound 0.1MC Simulations for ENDF/B-VI estimation 1 Snyder head model with 0.01 estimation 2 different cross section lower bound 0.001 0.1 100 1000 1 10

	Dose 35Cl (n,γ)	%Dose 35Cl(n,γ)	Total Dose
Upper bound	0.516	12.446	4.1830
ENDF/B-VII	0.514	12.410	4.1439
Estimation 1	0.551	13.196	4.1421
Estimation 2	0.325	8.167	3.9803
Lower bound	0.081	2.162	3.7660

E (eV)

ENDF: Use bound state to fit the thermal value of Mughabghab. -75 eV to -180 eV reported from different authors, different possibilities for low energy behaviour thermal point

Has this any impact on BNCT dose delivered to brain?

MC Simulations for Snyder head model with different cross section

ICRU: Doses must be known with less than 5% uncertainty

Set up and counting rate

Setup

Capture Setup in EAR-1

- 4 x C6D6 detectors, (neutron insensitive)

Commonly used in capture measurements at n_TOF 17

Samples of Na³⁵Cl or K³⁵Cl

Chlorine Isotopes

Stable Chlorine Isotopes - Cl Isotopes

Nominal mass	Accurate mass	% Natural abundance	Chemical form	Enrichment available %
³⁵ Cl	34.968852721 (69)	75.78 (4)	KCI, NaCl, BaCl ₂ , AgCl	83 - 99+
³⁷ Cl	36.96590262 (11)	24.22 (4)	KCl, AgCl, BaCl _{2,} PbCl ₂	42 - 86+

Chlorine Isotopes CI-35 and CI-37 are used to study the toxicity of environmental pollutant and are usually supplied in the form of NaCI.

Already produced:

500 mg 3.2e-3 at/b

250 mg 1.6e-3 at/b

Counting rate estimation

1.5 x 10^{18} protons for 35Cl measurement 0.5 x 10^{18} protons for normalization and background

Total 2 x 10¹⁸ protons

- F. Ogállar (University of Granada, Spain) Low energy values and application to dose calculations (together with 35Cl(n,p) recently performed) for BNCT of brain tumors
- S. Bennett (University of Manchester, UK) Resonance analysis and application to calculations of 36CI activity

Close coordination between groups for set-up and analysis

Conclusions

- Low E data (missing data) are important for BNCT
- Data in the resonance region (uncertain, only one measurement wilth nat CI) important for radioactive waste calculation
- Feasible experiment: samples and detector available and count rate above bacground guaranteed
- Two PhD students from different universities benefiting from the analysis and applications

THANK YOU FOR YOUR ATTENTION

Sample of Na³⁵Cl or K³⁵Cl

BNCT: promising therapy for brain tumors

Outcome of BNCT Osaka clinical trial for 21 brain tumor patients, combined with X-Ray Conventional Radiotherapy, and compared to standard treatments

S. Kawabata, S-I. Miyatake, T. Kuroiwa et al., J. Radiat. Res. (Tokyo) 50, 51-60 (2009).

BNCT Treatment Planning – Example of protocol

- Finnish clinical trial mean values
- Dose not accurately known BNCT is planned with a safe margin

	Brain tumor (PTV)	Healthy tissue (limiting factor)
Fractionated Dose (Gy)	60 (30 sessions of 2 Gy)	60 (30 sessions of 2 Gy)
Current dose of the BNCT treatment (Gy-Eq) – single session	35	12.1
Current photon equivalent dose of the BNCT treatment (Gy-Eq) – fractionated	50.5 (25 sessions of 2 Gy)	41.5 (21 sessions of 2 Gy)
Target photon equivalent Dose BNCT treatment (Gy-Eq)	71.0 (35 sessions of 2 Gy)	60 (30 sessions of 2 Gy)
Target BNCT dose (Gy-Eq)	46.0	16.0

Adjusting dose may improve outcome

A more precise dose calculation (includes improving all cross sections) could lead to optimize treatment time \Rightarrow Better therapeutic outcome and possibly survival

Energy range of interest: thermal to 100 keV

Spectrum of the main neutron beams for BNCT compared to the accelerator one of Ibaraki based on ⁹Be(p,n) reaction

I. Auterinen, T. Serén, K. Anttila et al., Int. J. Applied Radiation and Isotopes 61 (2004) 1021–1026 ENDF/B-VII.1:

PHYSICAL REVIEW C 73, 044603 (2006) *R-matrix analysis of CI neutron cross sections up to 1.2 MeV* R. O. Sayer, K. H. Guber, L. C. Leal, et al.

> For resonances above 500 keV, the capture widths were set to the average capture width of the resonances observed in the capture measurements. Average ³⁵Cl capture widths were 606 MeV for *s* waves and 860 MeV for *p* waves

Only one capture measurement in resonances:

PHYSICAL REVIEW C 65, 058801 (2002) *New Maxwellian averaged neutron capture cross sections for* ^{35,37}*CI* K. H. Guber, R. O. Sayer, T. E. Valentine, et al

Capture measurements performed only for ^{nat}Cl

(75% ³⁵Cl, 25% ³⁵Cl)

Thermal value

BNCT for head and neck tumors

Suzuki M, Kato I, Aihara T, et al. Head & Neck tumors: J Radiat Res. 2014 Jan; 55(1): 146–153. doi: 10.1093/jrr/rrt098

88Y source: γ's of 898.0 (93.7%) and 1836 keV (99.2%) Plot of the calibraton run, counts vs channels: Run#200437, <u>B6D62@900V</u> FS 0.5V, Offset 200mV, Threshold -228

Detector response:

Convolution with a gaussian resolution

Detector response:

Linear transformation channel-energy of the experimental spectrum

Detector response: calibration B6D6

Detector response: calibration L6D6

E (keV) = a n (ch) + b a = 68.21 keV/ch b = 142 keV

L6D6C@1650V, ⁸⁸ Y source (calibrated amplitude spectrum)

Using area instead of amplitude

Detector	a (keV/ch)	b (keV)	Run #
B6D61@800V	49.	82.	200440
B6D63@800V	71.	59.	100745
B6D63@900V	24.	62.	100744
L6D6B@1500V	120.	0.	100741
L6D6B@1600V	65.	0.	100742
L6D6C@1600V	85.	70.	200440

Background measurements EAR-2

All measurements: Full beam in vacuum

Configuration September 2014:

Detectors: B6D62@900V, L6D6C@1600V

Positions of detectors:

Тор	#200465, 467-471	FS: 0.5V, Offset 200mV, Thr -228
Middle	#200446-454	FS: 0.5V, Offset 200mV, Thr -228
Low	#200442-444	FS: 0.5V, Offset 200mV, Thr -228

Configuration October 2014 (after shielding):

Detectors: B6D61@800V, B6D62@970V, L6D6C@1650V

Positions of detectors:

Top #200630-631

Middle #200696-708

Low #200626-627

FS: 0.5V, Offset 200mV, Thr -240 FS: 1.0V, Offset -50mV, Thr -240 FS: 0.5V, Offset 200mV, Thr -240

Tests EAR-2 (thans to Frank Gunsing)

Gold for normalization

Background measurements EAR-2

Comp. Sep./Oct. Bkg L6D6C diff. pos.

Gamma-flash recovery

Detectors

- The response detector fits well the simulations assuming an energy resolution $\Delta E = \text{const } E$
- B6D6: ΔE/E = 5%, L6D6: ΔE/E = 10%
- Efficiency and recovery from γ-flash of L6D6 are superior

		Dose	Photon Isoeffective	Target photon
Tissue		prescribed	Dose of the BNCT	Isoeffective Dose
113500		with photons	treatment	BNCT treatment
		(Gy)	(Gy-Eq)	(Gy-Eq)
		60	41.5	60
Healthy tissue	Fractionated:	(30 sessions	(21 sessions of 2 Gy)	(30 sessions of 2 Gy)
		of 2 Gy)		(00.3030013.012.09)
	Single- fraction:	16	12.1	16.0
Brain tumor	Fractionated:	60 (30 sessions of 2 Gy)	50.5 (25 sessions of 2 Gy)	71.0 (35 sessions of 2 Gy)
	Single- fraction:	41.5	46.7	61,6 (PTVdose of 50 Gy)

- BNCT delivered with safe margin (12.1 Gy to healthy tissue, could receive up to 16 Gy)
- A more precise dose calculation (improving all cross sections) could lead to optimize treatment time ⇒ Better therapeutic outcome and possibly survival