# Establishing the deformation characteristics of <sup>66</sup>Ge

Dr. George O'Neill University of the Western Cape **P-531** 





### **Motivation**

- <sup>66</sup>Ge expected to lie on boundary of γ-soft and triaxial shapes [1]
- Valence particles in fpg shell challenge theoretical models
- Low-excitation structure not understood
- Post-accelerated beams only available at HIE-ISOLDE (July 2017)

[1] Kris Heyde and John L Wood, Shape coexistence in atomic nuclei, Rev. Mod. Phys. 83(4):1467, 2011







# **Motivation**

- **Solution**  $\Delta(2^+_2 2^+_1)$  relatively constant
- $\Delta(2^+_2 0^+_2)$  decreasing in energy
- Implies intruder orbital into the  $\gamma$  band
- Few measurements of  $0^+_2$  near N=Z with unstable nuclei



## **Current Situation**

- Level scheme well known
- Shapes are not
- Effect of mid-shell effects outside valley of stability between N, Z=28-50 unclear







#### Method

- Safe Coulomb excitation (4.9 MeV/u)
- De-excitations detected using MINIBALL
- Reorientation effect employed
- <sup>196</sup>Pt (4.0 mg/cm<sup>2</sup>) target for normalisation
  - No  $\gamma$  rays in regions of interest
  - Well-measured B(E2) values
- CD placed 26 mm downstream (any MINIBALL chamber)





#### **Beam Production**

- 66GeS can be enhanced with direct sulphur injection [1]
- Relatively clean beams with high yields extracted as molecule [2]
- Broken apart in EBIS
- <sup>34</sup>S enriched preferred to reduce possible <sup>70</sup>SeCO

[1] Ulli Koester et al., *Progress in ISOL target-ion source systems*, NIM B 266(20):4229, 2008
[2] Ulli Koester, Private Communication





# **Previous Experiment**

- 66Ge (4.395 MeV/u) data taken over 60 hours in summer 2017
- First time post-accelerated
- Intention was to perform <sup>70</sup>Se study (IS569); little yield obtained
- Yields of 66Ge on the order of 103 pps
- Decays from first 2+ state observed

Total statistics for gamma rays, background subtracted, Doppler corrected for scattered projectile









WESTERN CAPE



# **Experiment Outline**

- Mid-shell effects and underlying shape of 66Ge unknown
- Measurement only possible at ISOLDE
- Yields can be greatly enhanced compared to July 2017
- Production enhanced with sulphur contained within primary target
- Broken apart in EBIS
- Determination of sign & magnitude of quadrupole moment for 1st, 2nd 2+
- Matrix element for 1st 4+
- Search for 2<sup>nd</sup> 0<sup>+</sup>
- [1] J. Ballof, Private Communication

| Production material   | ZrO <sub>2</sub>                  |
|-----------------------|-----------------------------------|
| Primary target yields | 5.4 × 10 <sup>5</sup> ions/µC [1] |
| Beam energy           | 4.9 MeV/u (323.4 MeV)             |
| Charge state          | 16+                               |
| MINIBALL rate         | 6300 pps/µC                       |
| Shifts                | 15                                |





#### Collaboration

G. G. O'Neill<sup>\*1,2</sup>, J. N. Orce<sup>1</sup>, K. Abrahams<sup>1</sup>, E. Akakpo<sup>1</sup>, J. M. Allmond<sup>3</sup>,
D. T. Doherty<sup>4</sup>, R. Dubey<sup>1,2</sup>, L. P. Gaffney<sup>5</sup>, P. Garrett<sup>1,6</sup>, D. G. Jenkins<sup>7</sup>, M. Kamil<sup>1</sup>, N. Khumalo<sup>1</sup>, S. Masango<sup>1</sup>, D. Mavela<sup>1</sup>, C. Mehl<sup>1</sup>, M. Mokgolobotho<sup>1</sup>, E. M. Montes<sup>1</sup>, C. Ngwetsheni<sup>1</sup>, S. Ntshangase<sup>8</sup>, J. Ondze<sup>1</sup>, B. Rebeiro<sup>1</sup>, B. Singh<sup>1</sup>, S. Triambak<sup>1,2</sup>, R. Wadsworth<sup>7</sup>, M. Zielińska<sup>9</sup>

<sup>1</sup>: Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa

<sup>2</sup>: iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129, South Africa

<sup>3</sup>: INPA, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

<sup>4</sup>: University of Surrey, Guildford GU2 7XH, United Kingdom

<sup>5</sup>: CERN, CH-1211 Geneva 23, Switzerland

<sup>6</sup>: Department of Physics, University of Guelph, Guelph, Ontario, Canada

<sup>7</sup>: Department of Physics, University of York, York, United Kingdom

<sup>8</sup>: Department of Physics, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa

<sup>9</sup>: CEA Saclay, IRFU/SPhN, Gif-sur-Yvette, France





Yield as a function of energy







# **Coulomb Excitation Parameters**

- Most target particles available
- CoM angle safe until 96°
- Sommerfeld parameter  $\eta = 177$  (GOSIA valid)
- Adiabacity parameter ξ = 0.315 (2+) (3 MeV excitations)











# **Kinematics**

- Detection of forward-focused particles includes most target particles
- High-energy projectile particles detected
- Further detection of 66Ge possible by detection of target





