Neutron single-particle states towards ⁷⁸Ni: 80 Ga(*d*,*p*) 81 Ga

Spokesperson: *E. Sahin, **G. de Angelis, ***K. Hadyn´ska-Kl¸ek, **A. Gottardo *University of Oslo, Oslo, Norway **INFN- Laboratori Nazionali di Legnaro, LNL, Padova, Italy ***University of Surrey, Guildford, United Kingdom

1. Evolution of the N=50 shell gap from the mass measurements

J. Hakala et al., Phys. Rev. Lett. 101, 052502 (2008)

2. Recent mass measurements at ISOLDE : 75-79Cu

A. Welker et al., PRL 119, 192502 (2017).

<u>PFSDG-U interaction:</u> F. Nowacki et al., PRL 117, 272501 (2016).

Monopole interaction

■Proton-neutron interactions, primarily between proton 1f_{5/2} and neutron 1g_{9/2}.

■N=50 shell gap changes from 6.7 MeV at Z=40 to 4.9 MeV at Z=28

Multipole interactions

- Excitations of both protons and neutrons above the major gaps are necessary to reproduce observables in the ⁷⁸Ni region
- Shape coexistence in ⁷⁸Ni through the 2p-2h excitations

3. Shape coexistence in N=50 isotones:

- * A second 0⁺ state at 639 keV in ⁸⁰Ge (N=48) has been interpreted as an v(2p 2h) excitation across N = 50.
- * The first evidence of the shape coexistence in the N=50 region.
- * The energy of the 0^+_2 intruder state due to this 2p-2h excitation could be determined via:

$$E_{0_{2}^{+}} = 2(E_{\nu d_{5/2}} - E_{\nu g_{9/2}}) + \Delta E_{\text{pair}}^{\nu \nu} + \Delta E_{M}^{\pi \nu} + \Delta E_{Q}^{\pi \nu},$$

J. L. Woodet al, Phys. Rep. 215, 101 (1992).

1p-1h excitations between neutron 1g_{9/2} and 2d_{5/2} orbitals provide the essential ingredients

- to the monopole component of the NN interaction in order to determine the size of the N=50 gap
- to a better understanding of the correlation effects which can cause to a possible IOI and shape coexistence in the ⁷⁸Ni mass region

Main purpose of the present proposal is to study <u>1p-1h</u> excitations in the N=50 isotones starting from ⁸¹Ga.

7⁺ states from γ -ray spectroscopy

J. Hakala et al., Phys. Rev. Lett. 101, 052502 (2008)

EVEN-A N=50 Isotones

ODD-A N=50 Isotones

T. Rząca-Urban et al., Phys. Rev. C 76, 027302 (2007) A. Prévost, et al., Eur Phys. J. A 22 (2004) 391.

ES et al., Nucl. Phys. A 893, 1-12 (2012)

We propose to measure the neutron particle-hole states in ⁸¹Ga via one-neutron transfer reaction in inverse kinematics: ⁸⁰Ga(d,p)⁸¹Ga

- It will be the most exotic case along the N=50 nuclei in which neutron core states will be identified through *1p-1h* excitations.
- We aim to study the N=50 shell gap evolution closer to Z=28 via spectroscopy.
- Selection of *1p-1h* states will help us to understand the expected correlations and to predict states due to neutron *2p-2h* excitations
- Prediction of such 2p-2h states can be subject to further experimental campaigns at ISOLDE.
- If successful, in the future the same method can be applied to ⁸⁰Zn, the next member of the N=50 chain close to ⁷⁸Ni

⁸¹Ga: the most exotic odd-A N=50 isotope accessible to n-p excitations

ES et al., Nucl. Phys. A 893, 1 (2012)

Proposed Experiment ⁸⁰Ga(*d,p*)⁸¹Ga inverse kinematics

⁸⁰Ga + CD₂ @ E(⁸⁰Ga)=500 MeV

⁸¹Ga

Beam energy (⁸⁰Ga)

- Beam intensity on target
 - Initial beam intensity
 - **x** proton beam current
 - Transmission on MINIBALL beam line

Target thickness (CD₂)

Cross sections

500 MeV (6.25 MeV/nuc) 1.4 x10⁴ pps 3.5 x10⁵ pps 2 microA 2% 1 mg/cm² DWBA via FRESCO

 $\pi(f_{5/2}^2p_{3/2}) \nu(d_{5/2}g_{9/2}^{-1})$ <u>13/2-,15/2-</u>,17/2-,19/2-,21/2-,23/2-

Focus: *I=2* transfer

v**g**9/2⁻¹⊗v**d**5/2⁺¹

Institut de Physique Nucléaire, CNRS-IN2P3, France

Transmission on MINIBALL beam line

Beam energy (⁸⁰Ga)

Beam intensity on target

Initial beam intensity

proton beam current

500 MeV (6.25 MeV/nuc)

1.4 x10⁴ pps

 $3.5 \ x10^{5} \ pps$

2 microA

2% 1 mg/cm² DWBA via FRESCO

8%

 $15/2^{-1}$

 $13/2^{-}$

 $11/2^{-}$

 $7/2^{-}$

Beam energy (⁸⁰Ga)
Beam intensity on target

 Initial beam intensity
 proton beam current
 Transmission on MINIBALL beam line

Target thickness (CD₂)
Cross sections
MINIBALL efficiency at 1.3 MeV
TREX efficiency for protons

500 MeV (6.25 MeV/nuc) 1.4 x10⁴ pps 3.5 x10⁵ pps 2 microA 2% 1 mg/cm² DWBA via FRESCO 8% 25 % (G4 Simulations)

Total 3700 proton events will be obtained for the excited states at 2500 and 2700 keV (1800 events for each) in 6 days of beam time.

TOTAL: 18 shifts for physical runs + 3 shifts for beam preparation

Thank you

 $\theta_{\text{LAB}}(\text{deg})$

FIG. 8. Measured differential of	cross sections and
DWBA fits for $l = 2$ transitions.	
NLFR calculations using L/B par	rameters.

Torral	Level Cosman and Slater ^a				This experiment ^b				
Level No. ^a	<i>E</i> * (keV)	l	G_{IJ}^{c}	l	G_{lj}^{88}	G ⁸⁹ 1 j	J^{π} (assumed) ^d	S_{1j}^{88}	
1	(1836)	2	0.126	2	(0.13)		2^+	0.25	
5	4032	2	0.279	2	0.35		2+	0.71	
6	4294	2	0.376	2	0.53		4+	0.59	
7	4413	2	0.875	2	1.18		[5]+	1.07	
8	(4450)	2	0.083	(2)	(~0.10)		[4]+	(0.11)	
10	4514	2	1.080	2	1.31		[6]+	1.00	
12	4633	2	0.564	2	0.68		[3]+	0.97	
13	4744	2	0.805	2	0.14	5.86	[4]+	0.28(0.	16
17	5094	2	1.040	2	1.33		[7]+	0,89	
			5.228		5.75	5.86			
15	4873 ^e	0	0.230	0	0.24 ^e		[4]+	0.26 ^e	
21	5416	0	0.105	0	0.13		[5]+	0.12	
22	5466	0	0.563	0	0.61		4+	0.67	
23	(5506)	0	0.027	(0)	<0.01				
25	5729	0	0.789	0	0.94		[5]+	0.85	
26	(5780)	0	0.405	0	0(±0.03)	1.92			
32	(6214)	0	0.031	(0)	(~0.03)				
			2.150		1.95	1.92			

TABLE V. Summary of (d, p) results for levels in ⁸⁸Sr.

FIG. 9. Measured differential cross sections and DWBA fits for l = 0 transitions. All fits are based on NLFR calculations using L/B parameters.

Low-lying states are mainly based on proton excitations Information can be derived from high spin states

2p-2h excitations across the N=50shell to $2d_{5/2}$ - $1g_{7/2}$ - $3s_{1/2}$ for different shell gap values

Equivalent of 5+,6+ states in ⁸²Ge is found to be 13/2-, 15/2- in ⁸³As

SM Calculations:

A.F. Lisetskiy, B.A. Brown, M. Horoi, H. Grawe, Phys. Rev. C 70 (2004) 044314. Interaction: JJ4B + SDI Model spaces: *pfg9*+*sdg* Inert Core nucleus: ⁵⁶Ni Tensor interactions are included

The SPEs relative to the ⁵⁶Ni core have been derived from the SPEs with respect to the doubly-magic ⁷⁸Ni core.

Model Space	S	ingle-Parti	icle Energy	
pfg			$E(2p_{1/2})$	
	-9.28590	-9.65660	-8.26950	-5.89440
sdg 🧹	$E(2d_{5/2})$	$E(3s_{1/2})$	$E(1g_{7/2})$	
	-1.19440	-0.16800	0.2700	

$$E(vd_{5/2} - vg_{9/2}) = parameter$$

Equivalent of 5+,6+ states in ⁸²Ge is found to be 13/2-, 15/2- in ⁸³As

SM Calculations:

A.F. Lisetskiy, B.A. Brown, M. Horoi, H. Grawe, Phys. Rev. C 70 (2004) 044314. Interaction: JJ4B + SDI Model spaces: *pfg9*+*sdg* Inert Core nucleus: ⁵⁶Ni Tensor interactions are included

The SPEs relative to the ⁵⁶Ni core have been derived from the SPEs with respect to the doubly-magic ⁷⁸Ni core.

Model Space	S	Single-Part	icle Energy	Laurence
pfg		$E(2p_{3/2})$		
_		-9.65660		-5.89440
sdg 🥤		$E(3s_{1/2})$		
1. A	-1.19440	-0.16800	0.2700	

$$E(vd_{5/2} - vg_{9/2}) = 4.7(3) MeV$$

Gap Value at Z=28 from spectroscopy: 4.7(3) MeV

 $\frac{Gap Value at Z=32(^{82}Ge)}{E(vd_{5/2} - vg_{9/2}) - V_{monopole}=4.7-1.1=3.6(3) MeV}$

J. Hakala et al., Phys. Rev. Lett. 101, 052502 (2008)

ES et al., Nucl. Phys. A 893, 1-12 (2012)