Neutron single-particle states towards ${ }^{78} \mathrm{Ni}:{ }^{80} \mathrm{Ga}(d, p){ }^{81} \mathrm{Ga}$

Spokesperson: *E. Sahin, **G. de Angelis, ${ }^{* * *}$ K. Hadyn'ska-Klsek, ${ }^{* *}$ A. Gottardo
*University of Oslo, Oslo, Norway
*INFN- Laboratori Nazionali di Legnaro, LNL, Padova, Italy
***University of Surrey, Guildford, United Kingdom

1. Evolution of the $\mathbf{N}=50$ shell gap from the mass measurements

Next critical masses:
${ }^{82 Z n},{ }^{77,79,81} \mathrm{Cu}, 76,78,80 \mathrm{Ni}$

J. Hakala et al., Phys. Rev. Lett. 101, 052502 (2008)

2. Recent mass measurements at ISOLDE : ${ }^{75-79} \mathrm{Cu}$

PFSDG-U interaction:
F. Nowacki et al., PRL 117, 272501 (2016).

Monopole interaction
Proton-neutron interactions, primarily between proton $1 \mathrm{f}_{5 / 2}$ and neutron $1 \mathrm{~g}_{\mathrm{g} / 2}$.
$\mathbf{~} \mathrm{N}=50$ shell gap changes from 6.7 MeV at $\mathrm{Z}=40$ to 4.9 MeV at $\mathrm{Z}=28$

Multipole interactions
■ Excitations of both protons and neutrons above the major gaps are necessary to reproduce observables in the ${ }^{78} \mathrm{Ni}$ region

■ Shape coexistence in ${ }^{78} \mathrm{Ni}$ through the $2 p-2 h$ excitations

3. Shape coexistence in $\mathbf{N}=50$ isotones:

PRL 116, 182501 (2016)
PHYSICAL REVIEW LETTERS
week ending
\oint
First Evidence of Shape Coexistence in the ${ }^{78} \mathrm{Ni}$ Region: Intruder 0_{2}^{+}State in ${ }^{80} \mathrm{Ge}$
A. Gottardo, ${ }^{1,{ }^{*}}$ D. Verney, ${ }^{1}$ C. Delafosse, ${ }^{1}$ F. Ibrahim, ${ }^{1}$ B. Roussière, ${ }^{1}$ C. Sotty, ${ }^{2}$ S. Roccia, ${ }^{3}$ C. Andreoiu, ${ }^{4}$
C. Costache, ${ }^{2}$ M.-C. Delattre, ${ }^{1}$ I. Deloncle, ${ }^{3}$ A. Etile, ${ }^{5}$ S. Franchoo, ${ }^{1}$ C. Gaulard, ${ }^{3}$ J. Guillot, ${ }^{1}$ M. Lebois, ${ }^{1}$
M. MacCormick, ${ }^{1}$ N. Marginean, ${ }^{2}$ R. Marginean, ${ }^{2}$ I. Matea, ${ }^{1}$ C. Mihai, ${ }^{2}$ I. Mitu, ${ }^{2}$ L. Olivier, ${ }^{1}$ C. Portail, ${ }^{1}$
L. Qi, ${ }^{1}$ L. Stan, ${ }^{2}$ D. Testov, ${ }^{6,7}$ J. Wilson, ${ }^{1}$ and D. T. Yordanov ${ }^{1}$
${ }^{1}$ Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
${ }^{2}$ Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest-Măgurele, Romania ${ }^{3}$ CSNSM, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France ${ }^{4}$ Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A S16, Canada
${ }^{5}$ University of Helsinki, Helsinki, Finland
${ }^{6}$ Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, 35020 Legnaro, Italy ${ }^{7}$ Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Russia
(Received 26 January 2016; published 5 May 2016)

* A second 0^{+}state at 639 keV in ${ }^{80} \mathrm{Ge}(\mathrm{N}=48)$ has been interpreted as an $v(2 p-2 h)$ excitation across $\mathrm{N}=50$.
* The first evidence of the shape coexistence in the $\mathrm{N}=50$ region.
* The energy of the $0^{+}{ }_{2}$ intruder state due to this $2 p-2 h$ excitation could be determined via:

$$
E_{0_{2}^{+}}=2\left(E_{\nu d_{5 / 2}}-E_{\nu g_{9 / 2}}\right)+\Delta E_{\text {pair }}^{\nu}+\Delta E_{M}^{\pi \nu}+\Delta E_{Q}^{\pi \nu},
$$

J. L. Woodet al, Phys. Rep. 215, 101 (1992).

4. 1p-1h Excitations

$v g_{9 / 2^{-1}} \otimes v d_{5 / 2^{+1}}$
$1 p-1 h$ excitations between neutron $1 g_{9 / 2}$ and $2 d_{5 / 2}$ orbitals provide the essential ingredients
\square to the monopole component of the NN interaction in order to determine the size of the $\mathrm{N}=50$ gap

■ to a better understanding of the correlation effects which can cause to a possible IOI and shape coexistence in the ${ }^{78} \mathrm{Ni}$ mass region

Main purpose of the present proposal is to study 1p-1h excitations in the $\mathrm{N}=50$ isotones starting from ${ }^{81} \mathrm{Ga}$.

3. 1p-1h Excitations

7+ states from γ-ray spectroscopy

EVEN-A N=50 Isotones

T. Rząca-Urban et al., Phys. Rev. C 76, 027302 (2007)
A. Prévost, et al., Eur Phys. J. A 22 (2004) 391.

ES et al.,Nucl. Phys. A 893, 1-12 (2012)

ODD-A N=50 Isotones

We propose to measure the neutron particle-hole states in ${ }^{81} \mathrm{Ga}$ via one-neutron transfer reaction in inverse kinematics: ${ }^{80} \mathrm{Ga}(\mathrm{d}, \mathrm{p})^{81} \mathrm{Ga}$

- It will be the most exotic case along the $\mathrm{N}=50$ nuclei in which neutron core states will be identified through $1 p-1 h$ excitations.
- We aim to study the $\mathrm{N}=50$ shell gap evolution closer to $\mathrm{Z}=28$ via spectroscopy.
- Selection of $1 p-1 h$ states will help us to understand the expected correlations and to predict states due to neutron $2 p-2 h$ excitations
- Prediction of such $2 p-2 h$ states can be subject to further experimental campaigns at ISOLDE.
- If successful, in the future the same method can be applied to ${ }^{80} \mathrm{Zn}$, the next member of the $\mathrm{N}=50$ chain close to ${ }^{78} \mathrm{Ni}$

${ }^{81} \mathrm{Ga}$: the most exotic odd-A $\mathrm{N}=50$ isotope accessible to n -p excitations

Proposed Experiment ${ }^{80} \mathrm{Ga}(d, p)^{81} \mathrm{Ga}$ inverse kinematics

${ }^{80} \mathrm{Ga}+\mathrm{CD}_{2}$ @ $\mathrm{E}\left({ }^{80} \mathrm{Ga}\right)=500 \mathrm{MeV}$

Beam time request

© Beam energy $\left({ }^{80} \mathrm{Ga}\right)$

* Beam intensity on target

Initial beam intensity
proton beam current

- Transmission on MINIBALL beam line
- Target thickness (C_{2})

Cross sections

```
500 MeV (6.25 MeV/nuc)
1.4 x104 pps
3.5 x105 pps
2 microA
2%
1 mg/cm2
DWBA via FRESCO
```


$\pi\left(\mathrm{f}_{5 / 2}{ }^{2} \mathrm{p}_{3 / 2}\right) \cup\left(\mathrm{d}_{5 / 2} \mathrm{~g}_{9 / 2}{ }^{-1}\right)$
13/2-,15/2-,17/2-,19/2-,21/2-,23/2-

$\nu g_{9 / 2^{-1} \otimes v d_{5 / 2^{+1}}}$

Beam time request

© Beam energy (${ }^{80} \mathrm{Ga}$)

* Beam intensity on target

Initial beam intensity
a proton beam current
Transmission on MINIBALL beam line

- Target thickness $\left(\mathrm{CD}_{2}\right)$

Cross sections

- MINIBALL efficiency at 1.3 MeV
- TREX efficiency for protons

500 MeV (6.25 MeV/nuc)
$1.4 \times 10^{4} \mathrm{pps}$
$3.5 \times 10^{5} \mathrm{pps}$
2 microA
2\%
$1 \mathrm{mg} / \mathrm{cm}^{2}$
DWBA via FRESCO
8\%

Beam time request

Beam energy $\left({ }^{80} \mathrm{Ga}\right)$

* Beam intensity on target
- Initial beam intensity
proton beam current
Transmission on MINIBALL beam line
- Target thickness $\left(\mathrm{CD}_{2}\right)$
- Cross sections

MINIBALL efficiency at 1.3 MeV

- TREX efficiency for protons

500 MeV (6.25 MeV/nuc)
$1.4 \times 10^{4} \mathrm{pps}$
$3.5 \times 10^{5} \mathrm{pps}$
2 microA
2\%
$1 \mathrm{mg} / \mathrm{cm}^{2}$
DWBA via FRESCO
8\%
25 \% (G4 Simulations)

6 days of data collection

Beam time request

Beam energy (${ }^{80} \mathrm{Ga}$)

* Beam intensity on target

Initial beam intensity
proton beam current

- Transmission on MINIBALL beam line
- Target thickness $\left(\mathrm{CD}_{2}\right)$

Cross sections
MINIBALL efficiency at 1.3 MeV

- TREX efficiency for protons

500 MeV (6.25 MeV/nuc)
$1.4 \times 10^{4} \mathrm{pps}$
$3.5 \times 10^{5} \mathrm{pps}$
2 microA
2\%
$1 \mathrm{mg} / \mathrm{cm}^{2}$
DWBA via FRESCO
8\%
25 \% (G4 Simulations)

Total 3700 proton events will be obtained for the excited states at 2500 and 2700 keV (1800 events for each) in 6 days of beam time.

TOTAL: 18 shifts for physical runs +3 shifts for beam preparation

Thank you

Additional slides

FIG. 8. Measured differential cross sections and DWBA fits for $l=2$ transitions. All fits are based on NLFR calculations using L/B parameters.

TABLE V. Summary of (d, p) results for levels in ${ }^{88} \mathrm{Sr}$.

FIG. 9. Measured differential cross sections and DWBA fits for $l=0$ transitions. All fits are based on NLFR calculations using L/B parameters.

Low-lying states are mainly based on proton excitations Information can be derived from high spin states

82Ge

$2 p-2 h$ excitations across the $\mathrm{N}=50$ shell to $2 \mathrm{~d}_{5 / 2}-1 \mathrm{~g}_{7 / 2}-3 \mathrm{~s}_{1 / 2}$ for different shell gap values

40

Equivalent of $5^{+}, 6^{+}$states in ${ }^{82} \mathrm{Ge}$ is found to be $13 / 2^{-}, 15 / 2^{-}$in ${ }^{83} \mathrm{As}$

SM Calculations:

A.F. Lisetskiy, B.A. Brown, M. Horoi, H. Grawe, Phys. Rev. C 70 (2004) 044314.
Interaction: JJ4B + SDI
Model spaces: pfg9+sdg Inert Core nucleus: 56 Ni
Tensor interactions are included

The SPEs relative to the ${ }^{56} \mathrm{Ni}$ core have been derived from the SPEs with respect to the doubly-magic ${ }^{78} \mathrm{Ni}$ core.

Model Space	Single-Particle Energy			
pfg	$\mathrm{E}\left(1 \mathrm{f}_{5 / 2}\right)$	$\mathrm{E}\left(2 \mathrm{p}_{3 / 2}\right)$	$\mathrm{E}\left(2 \mathrm{p}_{1 / 2}\right)$	$\mathrm{E}\left(1 \mathrm{~g}_{9 / 2}\right)$
	-9.28590	-9.65660	-8.26950	-5.89440
sdg	$\mathrm{E}\left(2 \mathrm{~d}_{5 / 2}\right)$	$\mathrm{E}\left(3 \mathrm{~s}_{1 / 2}\right)$	$\mathrm{E}\left(1 \mathrm{~g}_{7 / 2}\right)$	
	-1.19440	-0.16800	0.2700	

$$
E\left(v d_{5 / 2}-v g_{9 / 2}\right)=\text { parameter }
$$

Equivalent of $5^{+}, 6^{+}$states in ${ }^{82} \mathrm{Ge}$ is found to be $13 / 2^{-}, 15 / 2^{-}$in ${ }^{83} \mathrm{As}$

SM Calculations:

A.F. Lisetskiy, B.A. Brown, M. Horoi, H. Grawe, Phys. Rev. C 70 (2004) 044314.
Interaction: JJ4B + SDI
Model spaces: pfg9+sdg Inert Core nucleus: 56 Ni
Tensor interactions are included

The SPEs relative to the ${ }^{56} \mathrm{Ni}$ core have been derived from the SPEs with respect to the doubly-magic ${ }^{78} \mathrm{Ni}$ core.

Model Space	Single-Particle Energy			
pfg	$\mathrm{E}\left(1 \mathrm{f}_{5 / 2}\right)$	$\mathrm{E}\left(2 \mathrm{p}_{3 / 2}\right)$	$\mathrm{E}\left(2 \mathrm{p}_{1 / 2}\right)$	$\mathrm{E}\left(1 \mathrm{~g}_{9 / 2}\right)$
	-9.28590	-9.65660	-8.26950	
sdg	$\mathrm{E}\left(2 \mathrm{~d}_{5 / 2}\right)$	$\mathrm{E}\left(3 \mathrm{~s}_{1 / 2}\right)$	$\mathrm{E}\left(1 \mathrm{~g}_{7 / 2}\right)$	
	-1.19440	-0.16800	0.2700	

$$
E\left(v d_{5 / 2}-v g_{9 / 2}\right)=4.7(3) \mathrm{MeV}
$$

Gap Value at Z=28 from spectroscopy:
4.7(3) MeV

Gap Value at $\mathrm{Z}=32\left({ }^{82} \mathrm{Ge}\right)$
$E\left(v d_{5 / 2}-v g_{9 / 2}\right)-V_{\text {monopole }}=4.7-1.1=3.6(3) \mathrm{MeV}$

ES et al.,Nucl. Phys. A 893, 1-12 (2012)

