
Collinear resonance ionization spectroscopy of RaF molecules

P-546 Spokespersons: RF Garcia Ruiz, RP de Groote, SG Wilkins

R.F. Garcia Ruiz^{1,2}, R. Berger³, J. Billowes¹, C.L Binnersley¹, M.L. Bissell¹, T.E. Cocolios⁴, R.P. de Groote⁵, G.J. Farooq-Smith⁴, V. Fedosseev², K.T. Flanagan¹, S. Franchoo⁶, W. Gins⁴, T.A. Isaev⁷, A. Koszorús⁴, S. Malbrunot-Ettenauer², B.A. Marsh², G. Neyens^{4,2}, S. Rothe², H.H. Stroke⁸, A.R. Vernon¹, K.D.A. Wendt⁹, A. Welker², S.G Wilkins², X.F. Yang⁴

- Molecules provide compelling advantages for the search for P- and PT-odd interactions
 - For instance, the best limits on eEDM: molecular probes (2010: YbF, 2013: ThO, 2017: HfF⁺)
- RaF is predicted to be an excellent candidate for future work

Goal of diatomic systems, e.g. RaF

Isaev, T. A. et al. R. Laser-cooled RaF as a promising candidate to measure molecular parity violation. PRA 82, 052521 (2010).

Isaev, T. A. et al. Laser-cooled radium monofluoride: A molecular all-in-one probe for new physics. arXiv:1310.1511 (2013).

Kudashov, A. D. et al. Ab initio study of radium monofluoride (RaF) as a candidate to search for parity- and time-and-parityviolation effects. PRA 90, 052513 (2014). Sasmal, S. et al. Relativistic coupled-cluster study of RaF as a candidate for the parity- and time-reversal-violating interaction. PRA 93, 062506 (2016).

Adapted from B. Spaun, PhD thesis

- Molecules provide compelling advantages for the search for P- and PT-odd interactions
 - For instance, the best limits on eEDM: molecular probes (2010: YbF, 2013: ThO, 2017: HfF⁺)
- RaF is predicted to be an excellent candidate for future work:
 - high sensitivity to electron EDM with a large $\rm E_{eff}$
 - high sensitivity to other P- and P, T-parity-violating effects
 - Structure well suited to laser-cooling

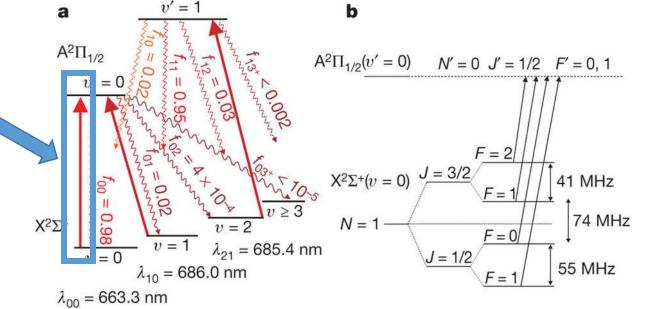
• ...

	Wa /Hz (P-odd)	Ws /kHz (P,T-odd)	E _{eff} GV/cm (eEDM)
BaF	1.9×10 ²	8.5	7.8
HfF ⁺	-	20	22.7
YbF	6.1×10 ²	41	24.6
RaF	2.1x10 ³	150	57

[1] Gaul & Berger J. of Chem. Phys 147, 014109(2017).

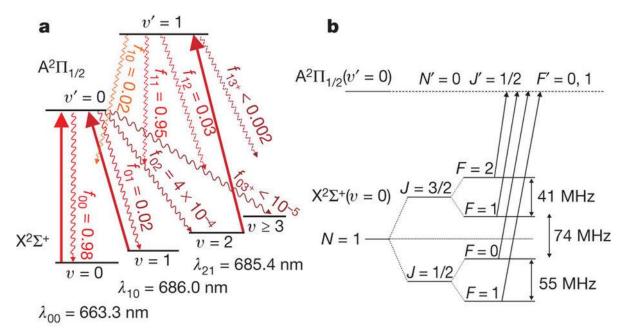
[2] Fleig. Phys. Rev. A 96, 040502 (2017)

[2] Kudashov et al. Phys. Rev. A 90, 052513 (2014).

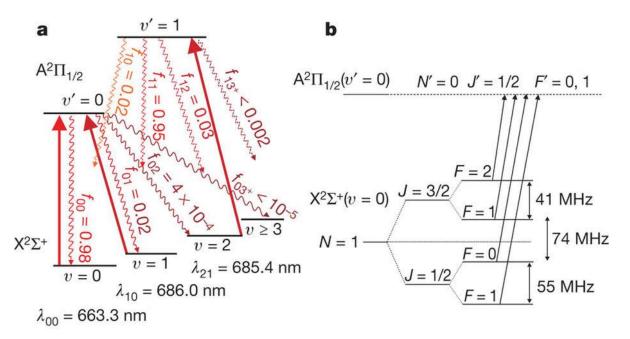

[2] Kozlov et al. Phys. Rev. A 56, 3326 (1997).

[3] Mosyagin et al. JPB, 31, 763 (1998).

Isaev, T. A. et al. R. Laser-cooled RaF as a promising candidate to measure molecular parity violation. PRA 82, 052521 (2010). Isaev, T. A. et al. Laser-cooled radium monofluoride: A molecular all-in-one probe for new physics. arXiv:1310.1511 (2013). Kudashov, A. D. et al. Ab initio study of radium monofluoride (RaF) as a candidate to search for parity- and time-and-parityviolation effects. PRA 90, 052513 (2014). Sasmal, S. et al. Relativistic coupled-cluster study of RaF as a candidate for the parity- and time-reversal-violating interaction. PRA 93, 062506 (2016).


 BUT... no experimental data exists at all, complicating the development of laser cooling schemes

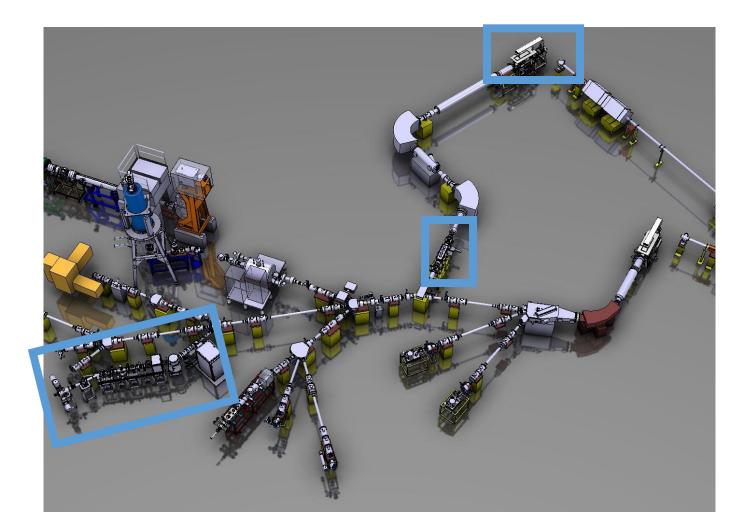
e.g.: What is the transition energy of the equivalent transition in RaF??


Cooling scheme for SrF, taken from Laser cooling of a diatomic molecule, Nature 467, 820–823 (2010)

- BUT... no experimental data exists at all, complicating the development of laser cooling schemes
- AND... interpretation of experiments relies on quantum chemistry calculations, which need to be benchmarked

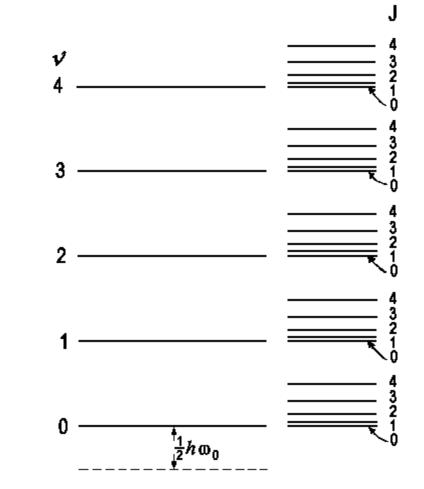
Cooling scheme for SrF, taken from <u>Laser cooling of a diatomic molecule</u>, Nature 467, 820–823 (2010)

- BUT... no experimental data exists at all, complicating the development of laser cooling schemes
- AND... interpretation of experiments relies on quantum chemistry calculations, which need to be benchmarked
- So, we propose to measure the following spectroscopic properties of RaF:
 - excitation energy of low-lying levels
 - ionization potential
 - Hyperfine structure of ²²⁵RaF -> probes E_{eff} for eEDM!

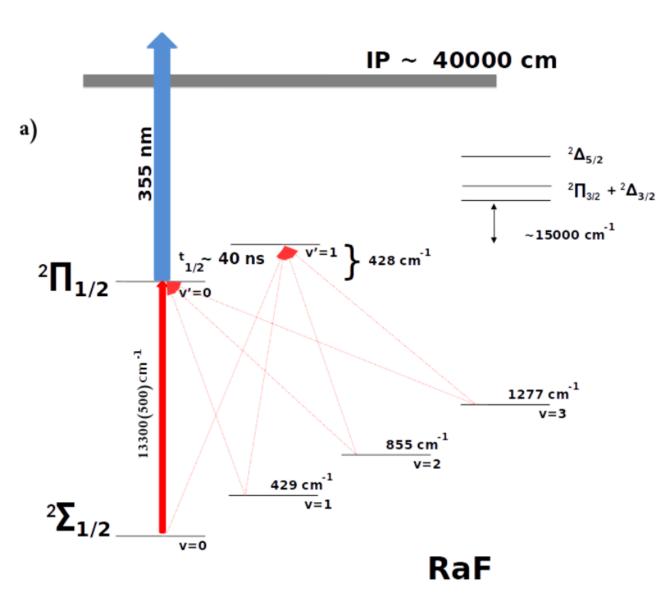

Cooling scheme for SrF, taken from <u>Laser cooling of a diatomic molecule</u>, Nature 467, 820–823 (2010)

Test validity of (ab-initio) quantum chemistry calculations

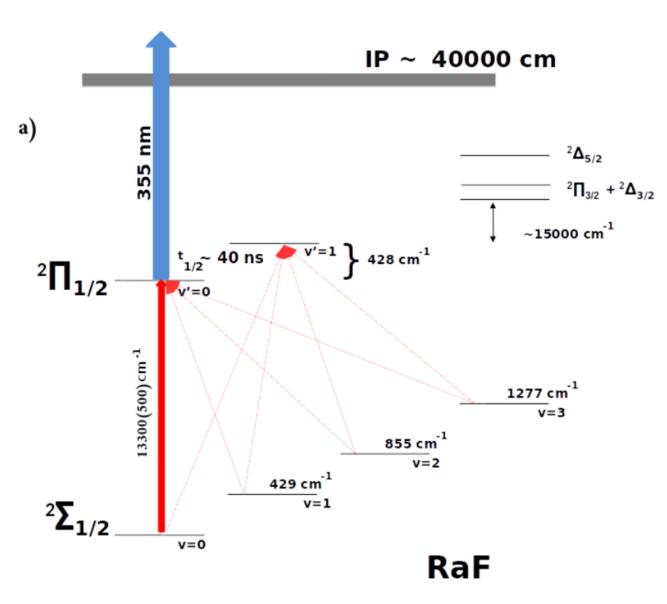
Significantly boost the development of laser cooling schemes of RaF **required** for future high-precision measurements


- Produce ¹³⁸BaF and ^{225,226}RaF ions at HRS
 - Irradiated target required, but
 - No protons required during experiment itself
- Cool and bunch, inject into the CRIS beamline

Molecule	Half-life	Yield
¹³⁸ BaF ⁺	Stable	> 10 ⁶
²²⁵ RaF ⁺	15 d	> 10 ⁵
²²⁶ RaF ⁺	1600 y	> 10 ⁶


- Neutralize molecular ions using standard charge exchange cell
 - Theoretically estimated cross sections are sufficiently large for efficient neutralization
 - However, only a fraction of the neutral molecules are in any given rovibrational J, v-state
 - ➔ efficiency of CEC into the state of interest estimated at 1:1000

Isaev, T. A. et al. Ion neutralisation mass-spectrometry route to radium monofluoride (RaF). arXiv:1310.1511v3 (2013).



Schematic illustration of vibrational and rotational energy levels of a diatomic molecule

- Neutralize molecular ions using standard charge exchange cell
- Laser-ionize RaF using a twocolour laser scheme
 - Theoretical calculations of transition wavenumber: 12800-13800 cm⁻¹
 - Two broadband laser systems to minimize scanning time
 - Once resonance located, scan with narrowband system

- Neutralize molecular ions using standard charge exchange cell
- Laser-ionize RaF using a twocolour laser scheme
- Detect laser-ionized molecules with efficient charged-particle detector (MCP)
 - Background due to collisional ionization of RaF estimated at 1:10⁴-10⁵ of total neutrals

Beamtime estimate

Note: All shifts are without protons!

- 1 shift for setup and initial optimization with BaF from ISOLDE target
 - Known ionization scheme, so no looking for the first resonance
 - Required to ensure shifts on RaF are used optimally

Beamtime estimate

Note: All shifts are without protons!

- 1 shift for setup and initial optimization with BaF from ISOLDE target
- 14 shifts Find excitation energy of ${}^{2}\Pi_{1/2}$ excited state in 226 RaF
 - Broadband
 - 100 cm⁻¹ = 30000 GHz to scan
 - 65 seconds per 6 GHz means ~80 hrs of continuous scanning
 - + 5 hours for regular laser optimization
 - Narrowband
 - Scan range of only 30 GHz, but much slower scan speed; 28 hrs

Beamtime estimate

Note: All shifts are without protons!

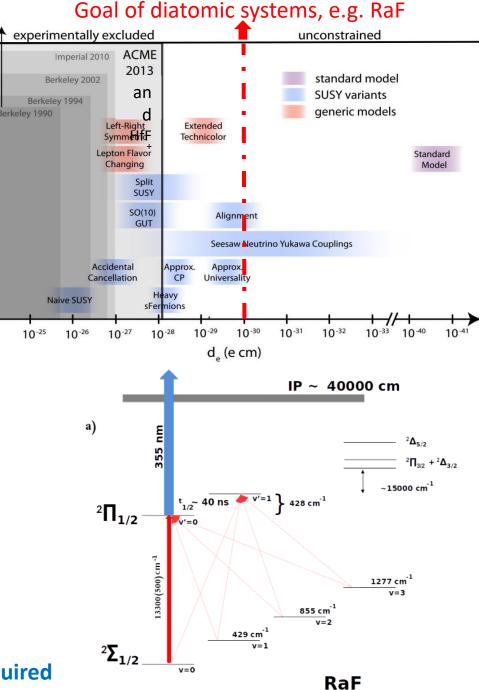
- 1 shift: Setup and initial optimization with BaF from ISOLDE target
- 14 shifts: Find excitation energy of ²Π_{1/2} excited state in ²²⁶RaF
- 1 shift: Determine Ionization Potential of ²²⁶RaF
 - Fix first step laser to the newly discovered transition wavelength
 - Scan second step using broadband, tunable dye laser
- 2 shifts: Determine Hyperfine structure of ²²⁵RaF
 - Transition wavelength can be well predicted from results on ²²⁶RaF
 - ~100 GHz scan range

In summary

Goal: Measurement of spectroscopic properties of the diatomic molecule RaF

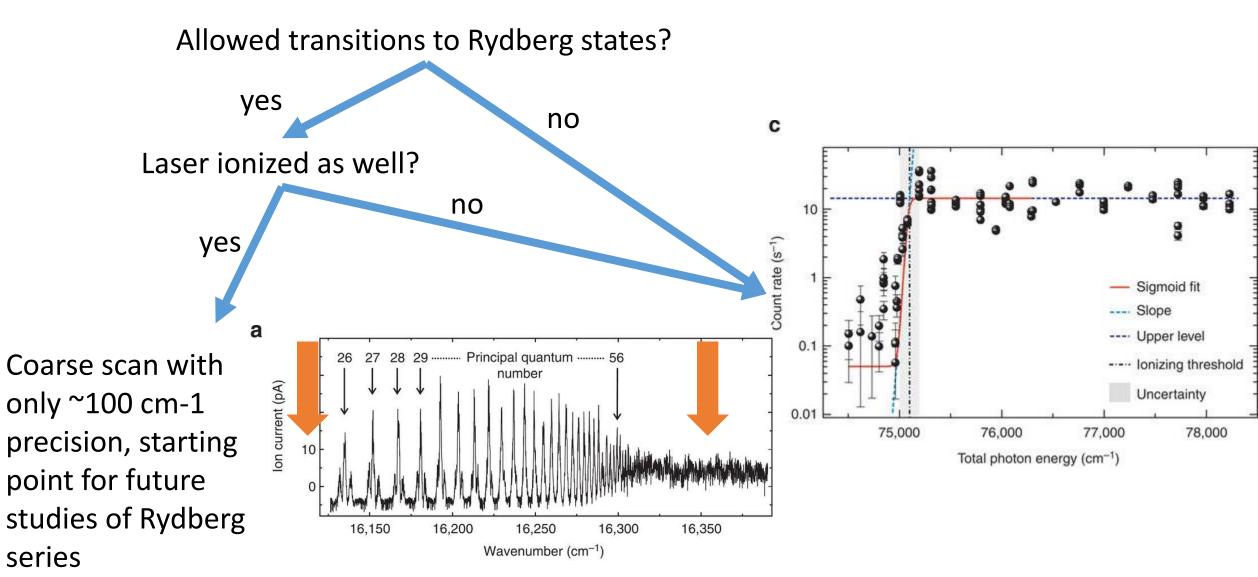
- excitation energy of low-lying levels
- ionization potential
- Hyperfine structure

Through these measurements, we can

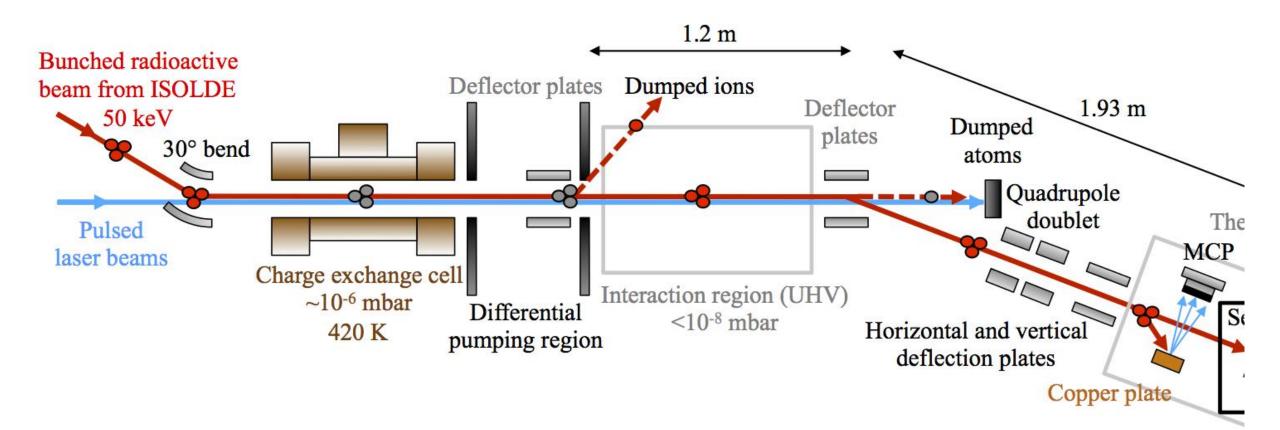

- Test validity of (ab-initio) quantum chemistry calculations
- Significantly boost the search for laser cooling schemes of RaF

These measurements will make a strong impact on future searches for physics beyond the standard model.

Molecule	Half life	Yield $(ions/s)$	Target	Shifts
$^{222}\text{RaF}^+$	$38 \mathrm{\ s}$	2×10^{6}	UC_x	—
$^{225}\text{RaF}^+$	$15 \mathrm{d}$	$> 10^{5}$	UC_x	2
$^{226}\text{RaF}^+$	1600 y	$> 10^{6}$	UC_x	15
$^{138}BaF^+$	stable	$> 10^{6}$	UC_x	1


No shifts with protons required

tim



Figures from S. Rothe et al, Nature Communications **4**, 1835 (2013)

IP determination

The CRIS method

