

Radiation resistance of elastomeric and lubricating materials in reactor mixed neutron and gamma fields

RDS_SPES project (Radiation Damage Study for SPES)

- The RDS_SPES collaboration and few words on the SPES project
- Motivations for a rad-hard study in reactor mixed n+γ fields

Overview

- Experimental results on elastomeric materials (with attention to dosimetry calculations)
- Experimental results on lubricating greases and oils
- Conclusions and prospects

The partners of the RDS_SPES Project

Aldo Zenoni, Brescia University, CERN January, 25, 2018

- A. The SPES Exotic Beam Production Group at LNL-INFN at Legnaro, Italy.
- B. The L.E.N.A. Laboratory at Pavia University, Pavia, Italy. (Irradiations with n+γ mixed fields at TRIGA Mark II research reactor)
- C. Physics and Materials Science Groups at Brescia University, Brescia, Italy. (Dosimetry calculations, experimental protocols, test of materials properties)
- D. The ESS (European Spallation Source) ERIC project at Lund, Sweden.

The Project is mainly supported by LNL-INFN, Italy; Brescia and Pavia Universities, Italy; ESS, Lund, Sweden.

3

MCNPX calculations

Triga Mark II core at LENA

Materials scientists MaST Lab

Partner locations (in Northern Italy)

SPES: The future of LNL

SPES is: 1) A second generation ISOL facility (for neutron-rich ion beams)2) An interdisciplinary research center (for p,n applications)

Radisotopes for medical applications

(Proton and Neutron Facility for Applied Physics)

The RIB production area

Target & Ion Source complex (TIS)

HV 40 kV Ionizer & transfer tube **High thermo TIS Heater** mechanical stresses 2000°C 15 day life cycle 5 year cooling 10¹³ fissions/s **Highly radioactive** environment Radioactive ion effusion and diffusion 40 MeV protons 200 µA, 8 kW Intense fission neutron and gamma fields (10¹⁰ particle/cm²/s) 200 mm 7 238UC_x coaxial disks **Only** automatic 1.3 mm thickness handling is possible 3 graphite dump disks

INFN Istituto Nazionale di Fisico Nucleare

Target & Ion Source complex (TIS)

Modification of material properties by radiation effects (radiation damage)

Some critical Front-End components (mainly polymeric materials)

- 1) Elastomeric joints (O-rings)
- 2) Lubricating oils and greases
- 3) Signal cable insulators
- 4) AC power wire jackets
- 5) Optical fiber core/cladding
- 6) Beam line insulators
- 7) Chamber base insulators
- 8) Chamber handling guides
- 9) Pneumatic motors
- 10) Electronic components

Component failure must be prevented

VAT valves O-rings

Damage of materials by radiation is a long-known technological problem

Typical report information CERN 82-10 (1982) (an exemplary job !)

Typical irradiation sources used for organic materials:

- a) 7 MW Astra reactor, Austria (Ebene 1 out of core position: 200 kGy/h; or switched off reactor))
- b) ASTRA fuel elements (100-10 kGy/h), (to avoid activation)
- c) ⁶⁰Co source (Dagneaux, France, **4.0** kGy/h) (to avoid activation)
- d) CERN accelerators (10-100 Gy/h)

Aldo Zenoni, Brescia University, CERN January, 25, 2018

neutron dose < 5%

Motivations for a new materials rad-hard study for SPES

- Rapid obsolescence of the data; new materials and suppliers available
- Rad-hard data are in general obtained in gamma fields only; very scarce data are available in mixed neutron and gamma fields. Is it really relevant?
- Large uncertainties in the rad-hard data provided by suppliers
- End use limits and dose thresholds are in general poorly defined

Market available products

Nuclear reactor $n + \gamma$ testing field

Specific applications

Ionizing radiation damage gamma fields vs fast neutron fields

- A generally accepted rule of thumb says that : "for equal energy absorbed, there will be equal radiation effect" (R.O. Bolt, 1963).
- In other words, it is assumed as a matter of fact that, for organic materials, the damage is to a large extent related to the absorbed dose irrespective of the type of radiation (CERN 82-10 (1982)).
- However, this is a not demonstrated fact, but only a first approximation. Gamma and neutron mechanisms for energy release are intrinsically different. Neutron energy release is more effective in the presence of hydrogen nuclei. Well known in biological applications.
- Radiation damage data with fast neutron fields are very scarce. It is easier and cheaper to irradiate polymers with gamma radiation rather than with neutron fields, which in addition generate material activation.
- Nevertheless, "there is a need to establish more exactly the relative effects of similar doses of fast neutrons and gammas in order to determine the validity of tests with gamma radiation in applications with fast neutron fields [fusion reactors]" (D.C. Phillips, AERE, R8923, Harwell (1978)).
- In the following, a comparison of radiation damage by gamma and neutron fields for lubricating greases and oils will be shown.

Experimental results on elastomeric materials for vacuum O-ring construction

Selected elastomeric materials

Selection criteria

- Good mechanical performance for vacuum and high temperatures
- EPDM is considered more radiation resistant than FPM
- FPM excellent vacuum behavior; it is more transparent to neutron fields (hydrogen content :1% vs 7-8%)
- Market availability and radiation stability indications by producers

Product	Type/producer	Curing	Mechanical properties	Radiation Hardness	Quality	Notes
VITON	FPM/Generic		Good	Not declared	Standard	Low H content
EPDM1	EPDM/Generic	sulfur	Fair	Not declared	Cheap	LNL off-the- shelf
EPDM2	EPDM/ Dichtomatik (DE)	peroxide	Good	Not declared	High standard	Alternative standard
EPDM3	EPDM/ James Walker (UK)	peroxide	Very good	1.6 MGy dose ⁶⁰ Co gammas	Certified material	Expensive

Dosimetry calculations (MCNPX)

FPM and EPDM typical compositions

Materials properties tested as a function of absorbed dose

- Mechanical and tensile properties
 - Compression set (25% squeeze + ageing 24h at 100°C) (%)
 - Elongation at break (%)
 - Elastic Modulus (MPa)
 - Tensile strength (MPa)
 - Hardness (Shore, IRHD)

Physical and chemical properties Density, FTIR analysis, DSC Calorimetry, CHNS composition, swelling test, DMTA

(ASTM D395-03)

(ASTM D1414)

O-ring samples

Correlate change in mechanical properties with microscopic modification

Universal

dynamometer

A sample of results: tensile properties EPDM2

Non Irradiated: 0.0 MGy 400% Elongation@break

5 h irradiation: 3.55 MGy 30% Elongation@break

Huge radiation induced stiffness and embrittlement

Aldo Zenoni, Brescia University, CERN January, 25, 2018

30% E@B

Comparison of tensile properties

Modulus increase: stiffness, cross linking

Ultimate properties: dramatic decrease of E@B

Conclusions on tested elastomers

- VITON (FPM) is more transparent than EPDM to fast neutron fields, but mechanical properties change a lot with dose. Dramatic increase of stiffness and brittleness under test irradiation conditions. (Not recommended).
- EPDM polymer based elastomers may have very different behaviors against irradiation, depending on the specific compound.
- EPDM1 (standard SPES) has fair mechanical properties that change considerably with irradiation. (Not recommended).
- EPDM2 and EPDM3 feature good mechanical properties that remain stable with absorbed dose (apart from E@B). Large price difference, apparently not justified by performance.
- Further elastomeric materials for O-ring construction to be tested ESS priority:
 - 1. Hayakawa 1111A, radiation resistant up to 2.0 MGy (gamma fields);
 - 2. Nichias EPDM-B, EP-176, radiation resistant up to 1.2 MGy (gamma fields) with excellent vacuum behavior.

Predictive capability of the performed tests on elastomers

- The predicting capability of accelerated aging tests in radiation environment is influenced by several factors: type of radiation fields, dose rate effects, presence and penetration of oxygen, temperature, sample geometry, synergistic effects.
- Reactor mixed fields have the same radiation components of the application, but order of magnitudes larger dose rate (300). Oxygen diffusion in the bulk material (DLO effect) may determine anaerobic or aerobic irradiation conditions, with different degradation mechanisms.
- Performed tests approximate anaerobic irradiation conditions, closer to conditions of the VAT valves O-rings irradiated in vacuum. For other vacuum O-rings, the results give a guideline of the behavior of the elastomers irradiated in the same conditions, on a comparative base.
- To test the effect of a different dose rate on material degradation, irradiations in a different reactor facility (Lazy Susan) has been performed, with a factor 15 less dose rate. Obtained results are encouraging.

Experimental results on lubricating oils and greases

INFN

Lubricant

Blend

Lubricant typical composition and characteristic properties

Oil	Base oil >75% Additives < 5%	Fluid	Dynamic Viscosity (cP=mPa s): the ratio between the applied shear stress and the rate of shear of a liquid (Viscometer)
Grease	Base oil > 75% Additives <5% Thickener 5%-25% sponge structure (metallic soap, fatty acids)	Semisolid two-phase systems	Consistency (mm/10): resistance to deformation and flow; penetration of a cone of specified dimensions and mass under gravity within 5 s (Penetrometer)

Phase

Polymeric materials 75% - 100% of the blend, petroleum based or synthetic

	Viscosity improvers
	Antiwear
Additives < E% improve	Foam inhibitors
Additives <5% improve	Corrosion inhibitors
base oil performance	Thickeners
	Antioxydants
	Radiation Damage

Radiation Damage Inhibitors

Radiation sensitive or used up during irradiation

Characteristic property

Consistency and NLGI grade scale

Manipulator for worked consistency

INFN

The grease is a semi-fluid to solid two-phase system

NLGI number	ASTM worked (60 strokes) penetration at 25 °C <i>tenths of a millimetre</i>	Appearance
000	445-475	fluid
00	400-430	semi-fluid
0	355-385	very soft
1	310-340	soft
2	265-295	"normal" grease
3	220-250	firm
4	175-205	very firm
5	130-160	hard
6	85-115	very hard

NLGI: National Lubricating Grease Institute

NLGI consistency numbers for worked penetration

Radiation damage

Expected effects of radiation on lubricants Storie beams for scient

Lubricating oils

INFN

- Radiation stability mainly determined by base oil nature (aromatic content)
- **Dominant effect: cross-linking**
- Viscosity increase

Lubricating greases

- More complex situation
- Two main effects on consistency

Selected greases to be tested

Product/Class	Producer	Base Polymer + Thickener	Consistency/ Viscosity (cSt)	Radiation Hardness	Quality	
Grizzly Grease n.1	Lubcon (DE)	Mineral + Li/Ca	NLGI 0	1.2 MGy, gamma	Used at CERN	
Turmopolgrease 2	Lubcon (DE)	Polyglicol + Li thickener	NLGI 2	Not declared	Interesting for ESS	
AFB-LF	тнк (Ј)	Mineral oil + Li thickener	NLGI 2	Not declared	Interesting for SPES (bearings)	
Krytox [™] 240 AC	Dupont-Chemours (USA)	PFPE + PTFE, H free	NLGI 2	1.0 MGy, reactor mixed field	Fluorinated Hydrogen free 🔥	
FAG Arcanol Load 220	Schaeffler (DE)	Mineral oil + mixed thickener	NLGI 1-2	Not declared	ESS priority	
Kluberlub BE 41-542	Kluber (DE)	Mineral oil + Li thickener	NLGI 2	Not declared	ESS priority (EP)	
Petamo GHY 133N	Kluber (DE)	Mineral oil + polyurea	NLGI 2	Not declared	ESS priority, standard SPES	
RG-42R-1 (grease)	MORESCO (JP)	PPE + Polycarbonate	NLGI 1	15.0 MGy, gamma	High radiation hardness	
RP-42R (base oil)	MORESCO (JP)	PPE	240 cSt at 40°C	15.0 MGy, gamma	base oil	
Apiezon-M (thick oil)	M&I Materials (UK)	Hydrocarbon, halogen free	Molten grease 413 cSt at 50°C	1.0 MGy, electrons	Ultra high vacuum	
Information on						
from prod	i radiation resista	ince i	High radiation	No H co	ntent , more	
uncertainties i	n testing procedu	ures	resistance	transpare	nt to neutrons	

Dosimetry calculations (MCNPX)

Preliminary tests performed/1

1) CHNS analyses to evaluate composition of materials: in particular Hydrogen content.

Product	С	н	Ν	Base oil
Grizzly Grease n.1	79.23%	11.63%	1.01%	Mineral
Krytox 143 AA	21.03%	0.0%	0.18	PFPE (fluorinated)

2) Gas development evolution under irradiation: mobility evaluation, design of irradiation setup and protocol Grizzly Grease n.1

3) Residual contact dose and NAA : activation, contamination and radioactive waste production

	Sample	100 mg (6 h irr)	3 day cooling	10 day cooling	
Safe handling after	Petamo	GHY-133N	<mark>0.4</mark> μSv/h	<mark>0.1 – 0.2</mark> μSv/h	
10-15 days	Krytox 2	83 AB	<mark>30</mark> μSv/h (²⁴ N	a) 0.1 – 0.2 μSv/h	
Acid production: haloge and ambient corrosion	n formation	Krytox pH<1 F content ~ critical		Petamo pH=4	Grizzly Grease pH=7 neutral

Preliminary tests performed/2

Plastic syringe failure under gas development

Gas development, grease mobility and overflow

Experimental results on greases (overview)

Overall results:

- Clear radiation induced modification: 10% Consistency variation = NGLI class change
- General increase of Consistency (grease softening, expected)
- Some rad-hard behavior at variance from gamma tests expectations
- In some cases very high radiation damage at low dose values: complete fluidization

Grizzly Grease n. 1

- Declared radiation resistance: up to 1.2 MGy (with gamma fields)
- Complete fluidization at 0.45 MGy
- Irradiation conditions (fields, dose rates) are crucial
- Definition of radiation resistance by producers to be questioned

- Polyglicol + Li thickener: NLGI class 2
- Declared radiation resistance: Not declared
- Large Consistency increase up to about 1.0 MGy
- Almost fluid at 1.63 MGy

Outstanding darkening Expected effect of additives?

• Outstanding radiation resistance in mixed fields up to 8.9 MGy

Experimental results on MORESCO oil/1

INFN diffuto Nazionale di Fisica Nucleare

Experimental results on MORESCO oil/2

Experimental results on greases (CERN products: S. Marzari)

- Declared radiation resistance: generic declaration.
- Nucleol Castrol G121 changes NLGI class from 1 to 0 at about 0.8 MGy
- Santolube Santovac 5GB changes class from 3 to 2 at about 0.8 MGy

Summary of user end-points for greases

Grease	NLGI class change	Fluidization	Radiation resistance declaration	
Petamo	Stable up to 8.9 MGy	No fluid point up to 8.9 MGy	No declarations	
MORESCO	Stable up to 7.6 MGy	No fluid point up to 7.6 MGy	Up to 15 MGy (base oil)	
Kluberlub BE 41-542	> 1.75 MGy	> 1.75 MGy	No declarations	
FAG Schaeffler Arcanol Load 200	>0.91 MGy	> 0.81 MGy	No declarations	
Krytox 240 AC	about 0.5 MGy	about 0.97 MGy	Rad resistant (0.2 -1.0 MGy)	
THK AFB-LF	> 0.47 MGy	About 1.88 MGy	No declarations	
Grizzly Grease n. 1 Lubcon	>0.42 MGy	> 0.42 MGy	Up to 1.2 MGy	
Turmopolgrease 2	about > 0.13 MGy	> 0.81 MGy	No declarations	

INFN

lstituto Nazion di Fisica Nuclea

Conclusions on lubricating greases

- A protocol for irradiation and testing of lubricating oils and greases in reactor mixed fields has been successfully developed
- Products declared as radiation resistant in gamma fields experience unexpected degradation in mixed fields.
- Irradiation parameters play a relevant role in assessing radiation damage. Radiation damage definition cannot be based only on total absorbed dose with pure gamma field.
- According to the literature, the grease radiation stability should be predominantly determined by the base oil chemical composition.
- The radiation induced fluidization of many products in mixed fields suggests that the thickener is the most sensitive grease component.
- As for elastomers, predictive capability of the obtained results may depend on many factors: radiation fields, dose rate, oxygen penetration, temperature, synergetic effects. Anyway obtained results may provide a guideline on a comparative base.

Overall conclusions and prospects

- Protocols for irradiation and testing of polymeric materials in reactor mixed fields have been successfully developed and validated.
- Experimental data on elastomers for O-ring construction and lubricating products useful for the construction of the SPES facility and the ESS project have been obtained.
- Intriguing evidence for a difference in radiation damage effects by pure gamma and mixed neutrons and gamma fields have been obtained.
- The generally adopted definition of radiation resistance for organic materials should be reconsidered.
- Apart for the significance for the target applications, the present work is providing original samples of data on radiation damage of common organic materials in conditions different from the ones usually employed.
- Next groups of materials to be considered in the study are signal cable insulators, power wire jackets (a lot of data from CERN reports) and optical fibers.