

CHERNE Conference 2018

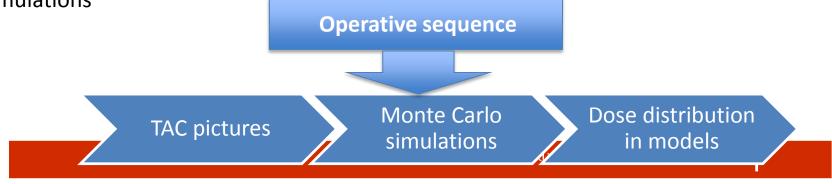
Cooperation in Higher Education on Radiological and Nuclear Engineering and Radiation Protection

MACUGNAGA - 29 MAY 2018

Analysis of the bias induced by the voxel and unstructured mesh Monte Carlo models with the MCNP6 code

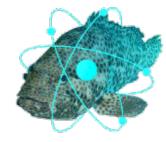
Lorenzo Isolan (1,*), Marco De Pietri (1), Mauro Iori (2), Andrea Botti (2), Elisabetta Cagni (2), Marco Sumini (1,3)

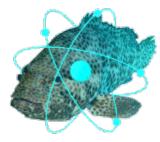
(1) Industrial Engineering Department, Alma Mater Studiorum University of Bologna, Italy.
 (2) AUSL of Reggio Emilia - IRCCS, Italy.
 (3) National Institute of Nuclear Physics - Section of Bologna, Italy.


Iorenzo.isolan2@unibo.it marco.sumini@unibo.it mauro.iori@ausl.re.it marco.depietri2@studio.unibo.it andrea.botti@ausl.re.it elisabetta.cagni@ausl.re.it

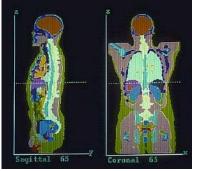
* Presenting author

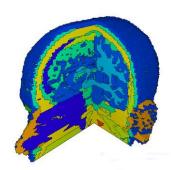
Superficial Radiotherapy with Photons Orthovoltage treatments


- Collaboration with the Medical Physics Department IRCSS Arcispedale S. Maria Nuova Reggio Emilia
- Superficial and Orthovoltaic Radiotherapy application areas:
 - o Nonmelanoma Cutaneous Tumors
 - o Cutaneous Mycosis
- Current treatment protocols
 - o High rates of tumor control
 - o Absence Treatment Planning System (TPS)
- Target: realization and evaluation of the benefits of a tps protocol based on Monte Carlo simulations


- Transition from "slice" information contained in the TAC as gray scale (Hounsfield scale "dependent machine") to volumetric and material information
- Choice of the most useful and fastest model geometry from the simulation point of view to simulate the particles transport processes (photons) with a Monte Carlo code:
 - unstructured meshes (optimal option from the point of view of the simulation of transport processes)
- Choice of MC code: **GEANT, FLUKA, MCNP**:
 - GEANT & FLUKA procedures not yet consolidated for the transition from TAC to unstructured meshes

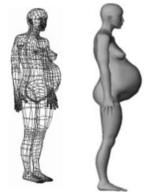
• Used Monte Carlo code: MCNP6.1.1: Code extensively tested and validated,


Integration with geometric models with non-structured meshes validated (also by manufacturers of therapy machines, eg VARIAN)


From TAC to Model for Transport processes: Anthropomorphic Computational Phantoms

Voxel Models

Zubal et al. 1994

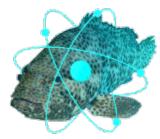


Zubal et al. 1995

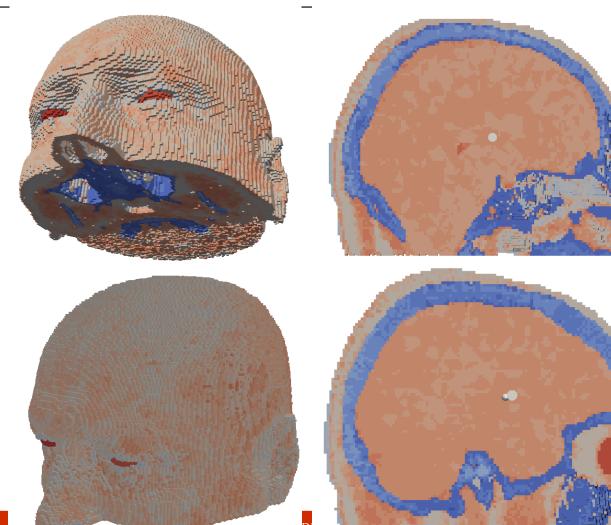
Non structured mesh models (UM NURBS type)

Segars et al. 2001

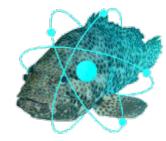
Xu et al. 2004


- Field in great development
- Computational power
- Imaging techniques diffusion

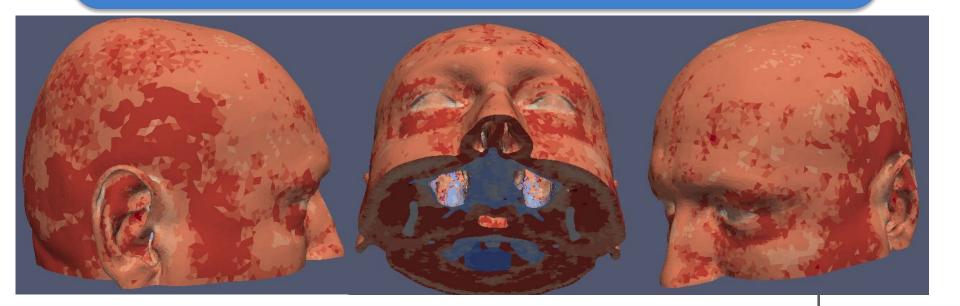
Benefits of the NURBS models:


- Better representation of volumes and surfaces
- Deformability
- 4D models
- Removal of Voxel effects due to geometric "bias"

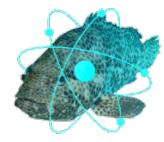
Voxel model visualization



- Cubic Voxels
- Every element has the same dimension as all the others
- The elements are parallel and simply traslated to each others

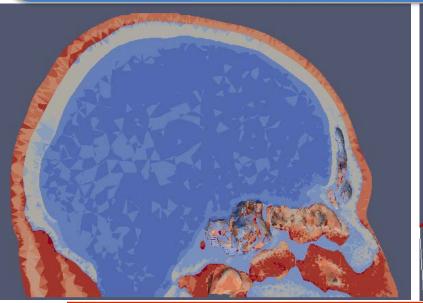


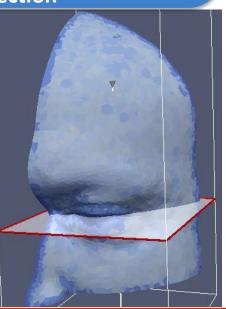
Unstructured mesh model visualization

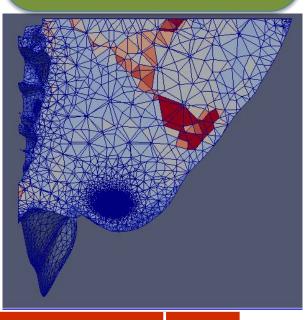

• The unstructured mesh models can be tetrahedal, exahedral,....

- The order of the mesh can be 1 or 2 (curved faces of the elements)
 - The volumes are better descripted

Unstructured mesh model visualization

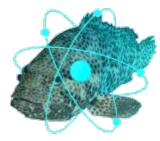



 The material inhomogeneities can be taken into account
 The UM is adaptatives, so, mesh refinements occurred to better descript the organ volumes

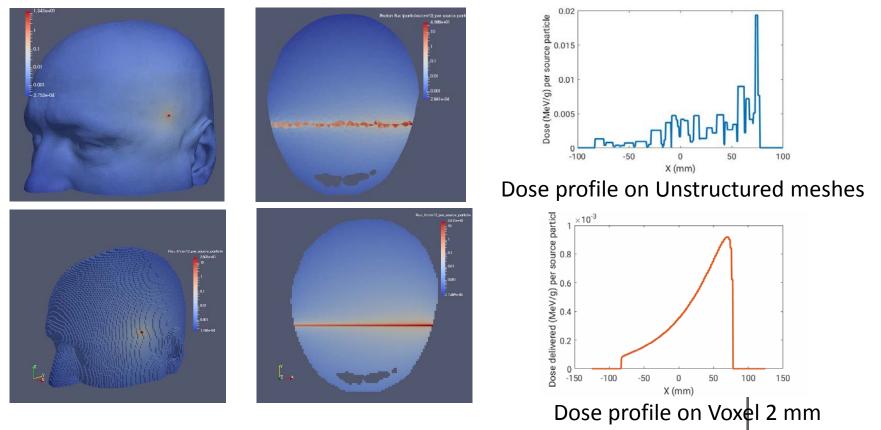

• The mesh can be refined or modified with different softwares

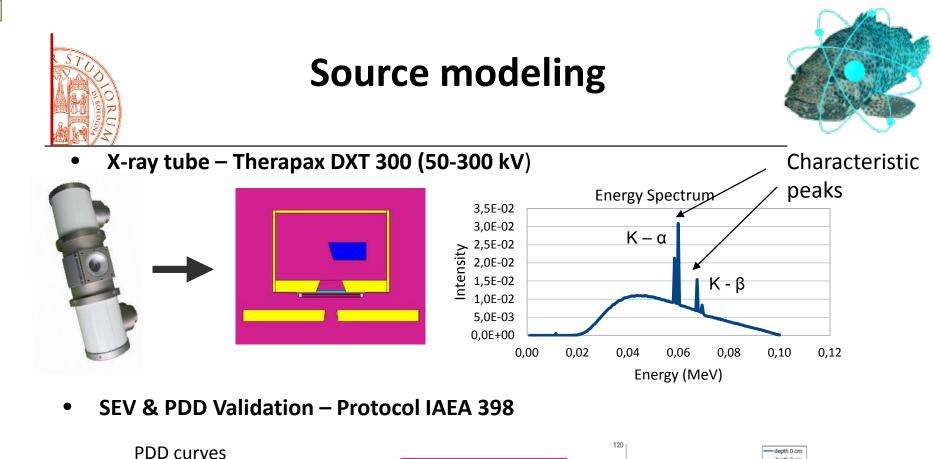
• The UM interfaces (between the elements) are distribuited in each direction

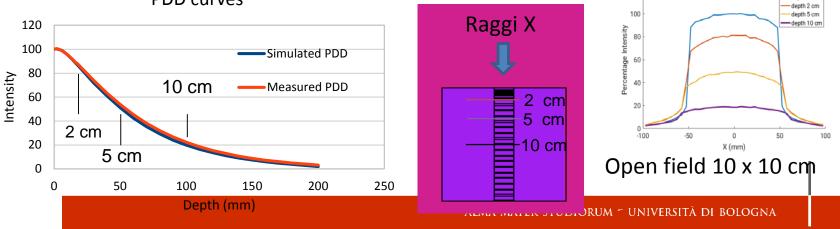
 Mesh refinements of size inferior to the TC resolution (1-2 mm) are admitted in homogeneous organs



Unstructured mesh

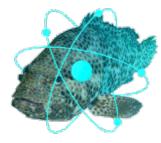

Voxel 2 mm

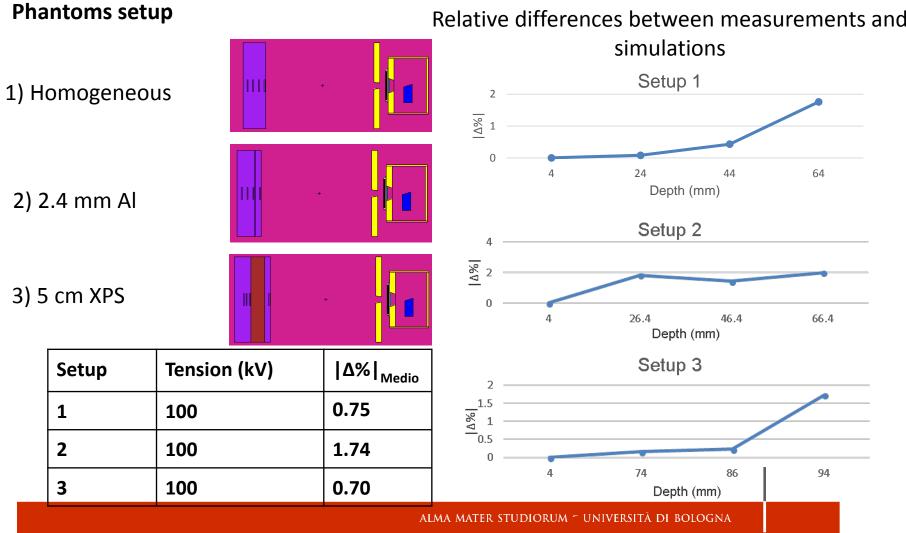

Example of Voxel effects on a TAC model

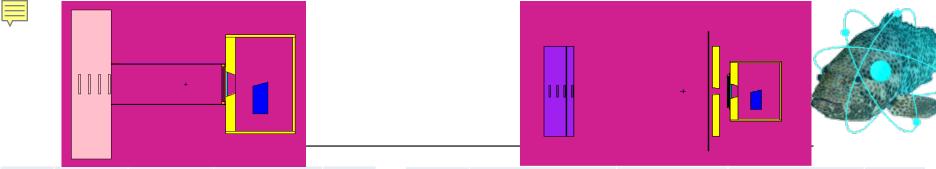


Monoenergetic point Beam Analysis in homogeneous material (water)

Impact Arrangement and Size of elements in areas with high gradient

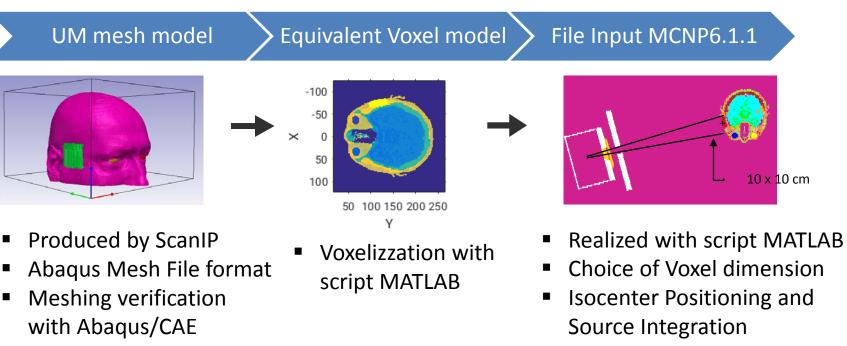






Source validation

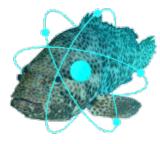
Experimental measurements on 3 instrumentated phantoms


	Depth	Measure	Simulation	Δ%	
[kV]	[cm]	[%]	[%]		
50	0.4	100.00	100.00	0.00	
50	2.4	46.67	52.54	5.87	
50	4.4	22.60	27.16	4.55	
75	0.4	100.00	100.00	0.00	
75	2.4	62.03	60.33	1.70	
75	4.4	36.37	34.96	1.41	
100	0.4	100.00	100.00	0.00	
100	2.4	79.78	79.70	0.08	
100	4.4	57.58	57.16	0.43	
100	6.4	39.04	37.28	1.76	
300	0.4	100.00	100.00	0.00	
300	2.4	86.29	86.03	0.26	
300	4.4	68.22	67.62	0.60	

[kV]	Depth [cm]	Measure [%]	Simulation [%]	Δ%
100	2.4 + 0.24 Al	65.47	63.64	1.83
100	4.4+ 0.24 Al	48.10	46.66	1.44
100	6.4+ 0.24 Al	32.72	30.73	1.99
	000	÷		
[kV]	Depth [cm]	Measure [%]	Simulation	[%] Δ%
100	2.4 +5 XPS	58.96	59.13	0.16
100	3.6 + 5 XPS	51.69	51.92	0.23
100	4.4 + 5 XPS	44.69	46.42	1.73

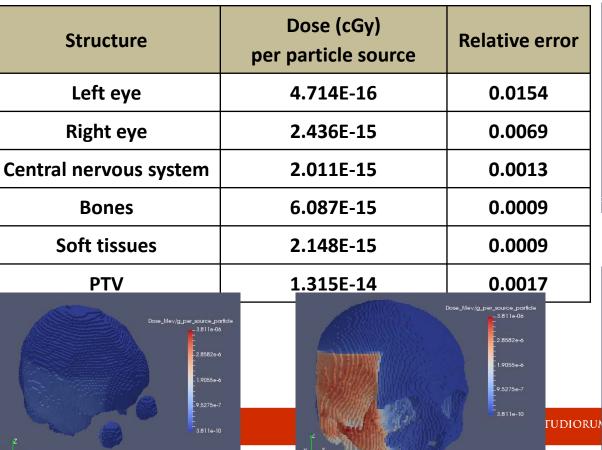
Development of a Voxel model Equivalent to the UM ones

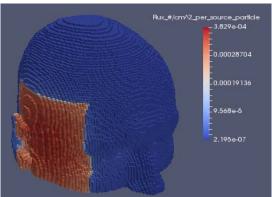
- 2. Voxelizzation and Importation in MCNP6.1.1
 - Tools: Abaqus/CAE + MATLAB Scripts

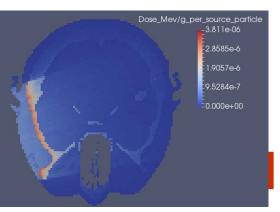


 Assignment Material Properties ICRU (Composition + density)

Voxel dimension	2 x 2 x 2 mm	Properties ICR
Voxel number	1,250,000	(Composition -
Simulated photons	10E+08	
Runt time (Xeon 32 thread)	~ 43 h	≀um ~ Università di Bologna

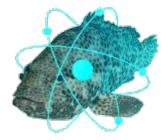

Voxel model



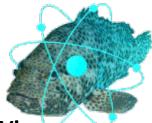

- 3. Post-Processing & analysis results.
- Tools: MATLAB Scripts + ParaView

Average dose at the structures

Spatial dose distribution

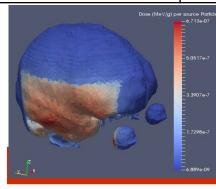


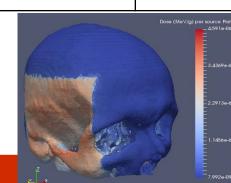
Unstructured Mesh Model Development



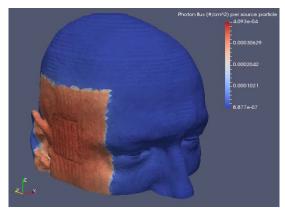
- 1. Meshing segmented model. Tool: ScanIP
- 2. Import in MCNP6.1.1. with the pre-processing tool

TAC pictures	Unstructured mesh m	U	File Input MCNP6.1	.1	
	 ScanIP Mesh verification with Abaqus/CAE Um_pre_op611 				
A second	Downsample factor	0.65	Number of structures	6	
	Target minimum side	3 mm 7.5 mm	Number of material	14	
	Target maximum side		Simulated photons	10E+08	
↓	Number of elements	740996	Run time	~ 8 h	
	Number of nodes	161486	(Xeon 32 thread)		

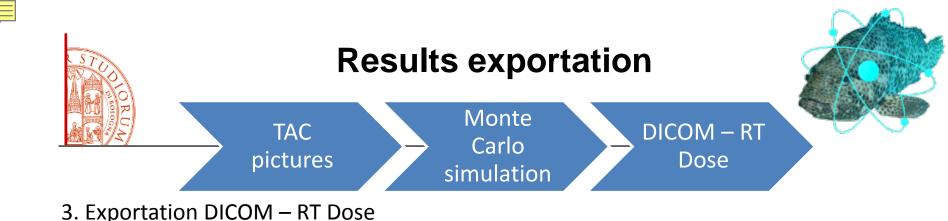

Unstructured Mesh Model Development

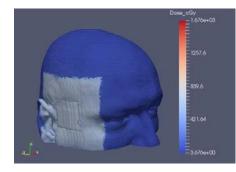


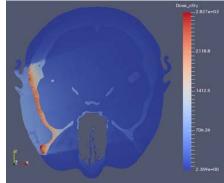
3. Post-Processing & Analisys Risults.Tools: MATLAB Scripts + ParaView


Average dose to structures

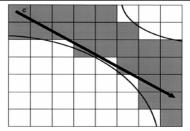
Structure	Dose (cGy) per Particle Source	Relative error
Left eye	4.821E-16	0.0107
Right eye	2.473E-15	0.0048
Central nervous system	1.987E-15	0.0019
Bones	6.125E-15	0.0032
Soft tissues	2.119E-15	0.0016
PTV	1.317E-14	0.0012

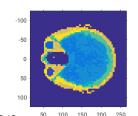



Spatial dose distribution



- Format to export Spatial Distribution Dose Absorbed in the model
- DICOM format extension (TAC images). Standard for Data Integration Radiotherapy with Patient Information
- Essential for the implementation of the Treatment Planning System (TPS) based on Monte Carlo
- Used in all Commercial Calculation codes for Patient Data Management and TPS
- Made using MATLAB scripts for Voxel and Non-Structured Mesh results




Voxel effects on big application field

Abnormalities related to the Voxel model description

- Wrong volume reproduction
- Impact on particle transport simulations

-100

-50

50

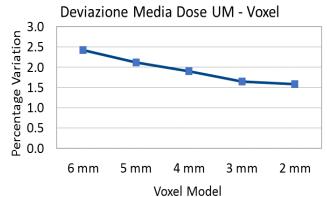
100


100

150

200

Voxel 2 mm

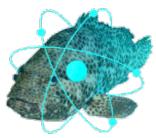

50 100

150 200

250

- Simulations with increasing voxel resolution
- 10 x 10 field monoenergetic beam
- Homogeneous material (water)

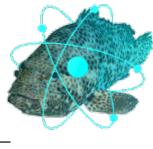
Local dose deviation


Deviations localized in regions with a high dose gradient

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

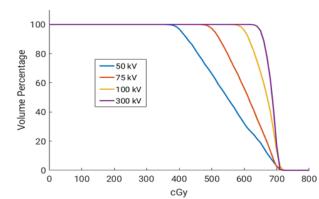
Partial Convergence for increasing resolution

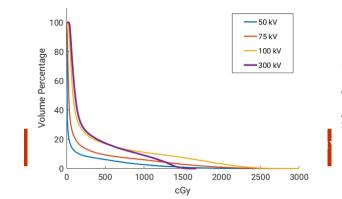
X-ray tube voltage evaluation

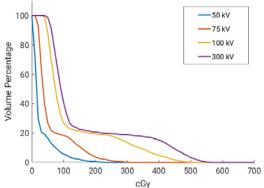


-4	N. Setup	SSD (cm)	Applicator	Filter	(kV)
	1	30	8 cm – Cylindrical	F1	50
	2	30	8 cm – Cylindrical	F3	75
	3	50	Open field – 10 cm square	F4	100
ſ	4	50	Open field – 10 cm square	F8	300

Filter	Materials	Thickness (mm)		Dow_c6y 227+r01 2120.6		3	008_cGy -2.827e
F1	Aluminum	1.65	50 kV	14137 14137	75 kV		1413.7
F3	Aluminum	3.10		70.85			706.85
ГЛ	Aluminum	2.5					E.000*
F4	Copper	0.1	100 107	Doie50y 		Dos	е_сGy 2.827е+
	Aluminum	1.5		2118.0		2	2118.8
F8	Copper	0.25	100 kV	14128	300kV	· · ~ / //	1412.5
	Tin	0.8		70.24			706.26
				¹ / _{2 ×} 2,399+100 S	SITÀ DI BO		2.359++

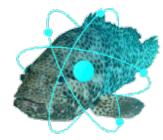

X-ray tube voltage evaluation

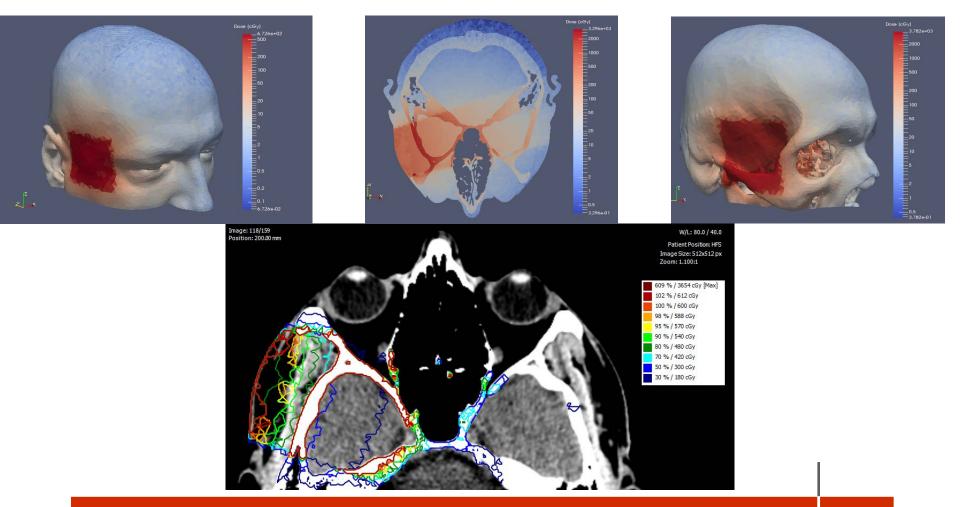


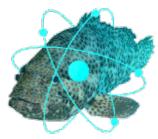

4. Average dose to structures analysis

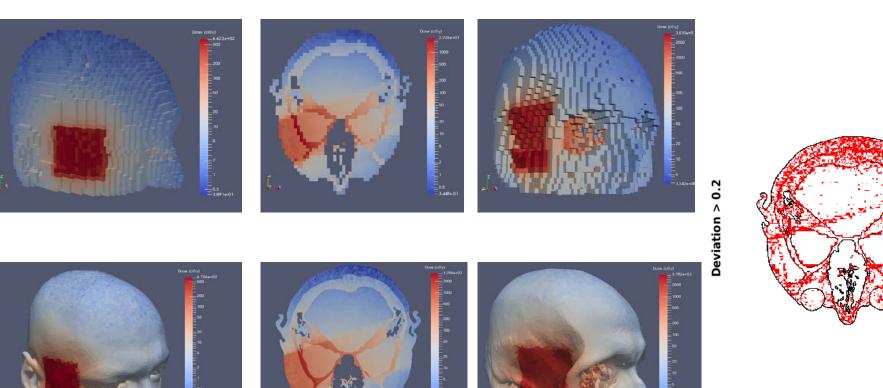
• 5. Histograms Dose-Volume

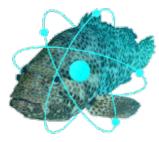
Tension 100 kV 50 k		۷ 75		kV	300 kV		
Structure	Dose	Dose	Δ%	Dose	Δ%	Dose	٨٥/
Structure	(cGy)	(cGy)	Δ7ο	(cGy)	Δ7ο	(cGy)	Δ%
ΡΤν	664.1	549.0	-17.3	608.2	-8.4	683.3	2.9
Left eye	24.2	2.7	-88.9	9.8	-59.4	41.0	69.5
Right eye	125.1	27.5	-78.1	58.6	-53.2	157.4	25.8
CNS	100.3	13.4	-86.6	41.2	-58.9	171.2	70.7
Bones	230.2	84.2	-63.4	161.6	-29.8	278.2	20.8
Soft tissues	107.9	47.8	-55.7	64.0	-40.6	143.7	33.2
Head (total) DVH – PTV	, 179.3	50.7	-71.7	93.2	-48.0	201.2	12.2
DVH - PIV			DVH – B	one tissue	D	VH – Right I	Eye (OAR)

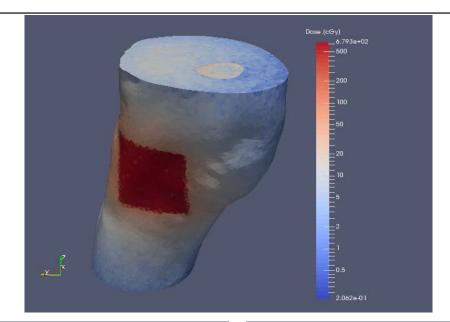


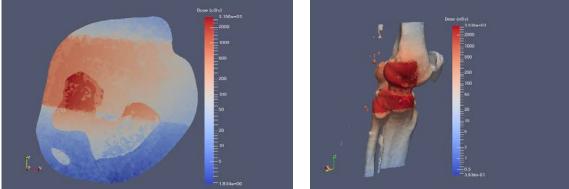



Contouring on Dicom Files (smaller field)

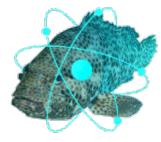



Differences between the two techniques with a smaller field

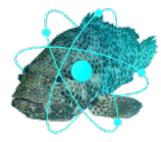




Example of knee treatment

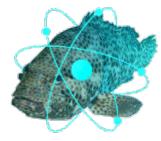


Conclusions



- MC methods can now be applied with great accuracy to structures coming from CT-SCAN, in particular thanks to the UMs and therefore provide additional information in the choice of treatment parameters and avoiding geometrical bias as in classical voxel models
 - Benefits: Integration of Existing Protocols with Monte Carlo-based TPS

<u>The application of UM models in Monte Carlo methods can</u> provide models accurately reproducing the complex surfaces of <u>human structures</u>, with significant benefits over voxel models. <u>Furthermore, it has been shown that MC methods can be used</u> <u>effectively to evaluate the impact of Radiotherapy parameters in</u> <u>Orthovoltage treatments. This can produce better results in skin</u> <u>lesion control and an overall benefit in the patient quality life.</u>



Future developments

- Simplification of the creation of models from TAC pictures
 - Developments of parameters for the reduction of the variance and of the simulation time
 - Collaboration with IRCSS ASMN Reggio Emilia for passage from Prototype to TPS integrated in the Treatment Protocol

THANK YOU