DEPARTMENT OF ENERGY Nuclear Engineering Division - CeSNEF

Integrated Laboratories of Nuclear Engineering

Applied Radiochemistry @ PoliMI

Mario Mariani

May 2018

RADIOCHEMISTRY & RADIATION CHEMISTRY

@ NUCLEAR ENGINEERING


...why ?

POLITECNICO MILANO 1863

2

Periodic Table of Elements

the existing elements can be organised into a periodic table

Of course, this is a domain of **CHEMISTRY!!!**

But...

POLITECNICO MILANO 1863

Mario Mariani

Stable and Unstable Nuclei

AS YOU WELL KNOW THE ATOMIC NUCLEI OF THE ELEMENTS CAN BE STABLE OR UNSTABLE

16**C**

15**C**

4

Mario Mariani

⁹C

10

11

12**(**

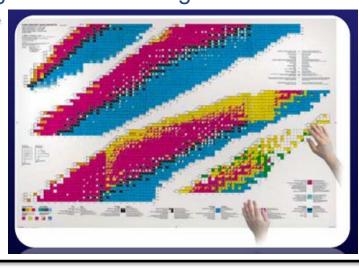

13**C**

Chart of Nuclides

A new way to organise the existing nuclides is needed

Ζ

 Few nuclides are WELL BALANCED

 Some nuclides have TOO MANY NEUTRON

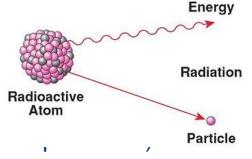
 Some nuclides have TOO FEW NEUTRON

 Some nuclides have TOO MANY NUCLEONS

 (protons and neutrons)

 Some nuclides are TOTALLY UNSTABLE

 Some nuclides are in an EXCITED STATE

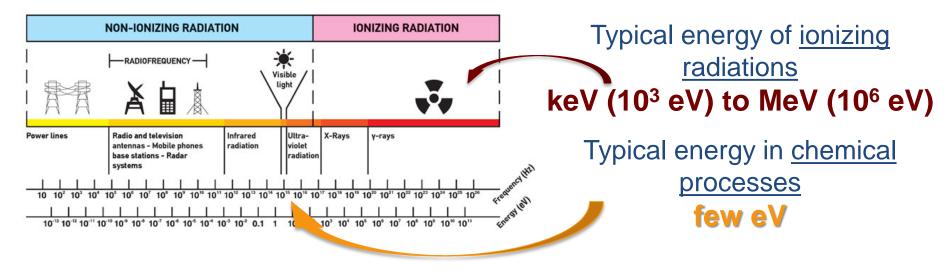

- They are **STABLE** (black boxes)
- They are β ⁻ EMITTERS (blue)
- They are **β⁺ or ELECTRON** CAPTURE EMITTERS (pink)
- They are α EMITTERS (yellow)
- They give **FISSION** (green)
- They are **γ EMITTERS** (white)

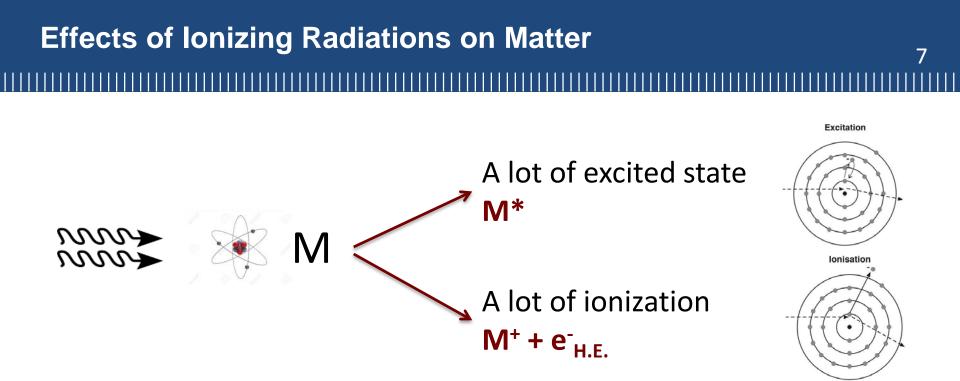
POLITECNICO MILANO 1863

Ν

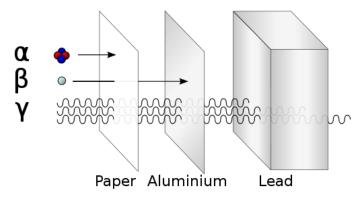
5

Ionizing Radiations




The products of this instability are the IONIZING RADIATIONS

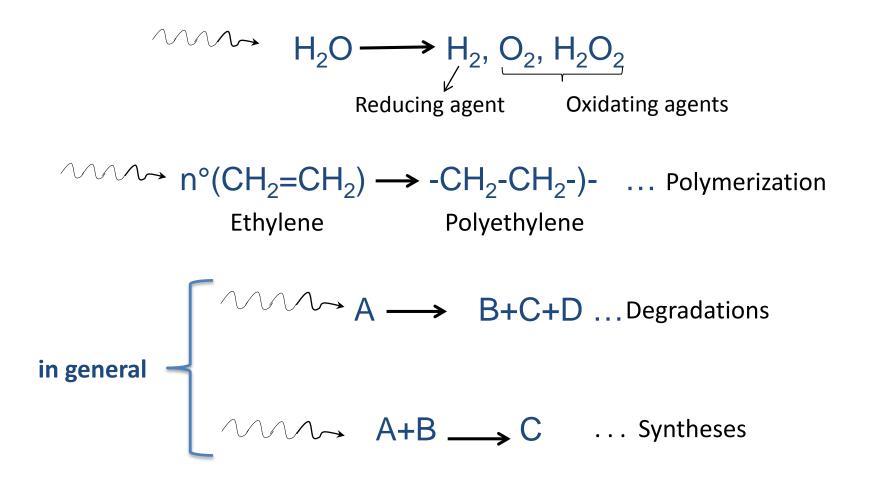
HIGH ENERGY PARTICLES $(\alpha, \beta^2, \beta^4, n, fission HIGH ENERGY PHOTONS (\gamma, x)$


produced by

RADIOACTIVE DECAYS and/or NUCLEAR REACTIONS

different interactions for different ionizing radiations

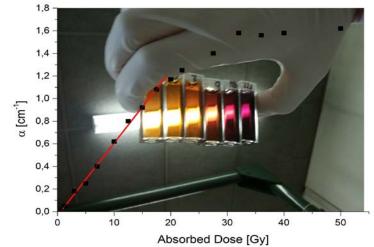
<u>a common concept:</u> the ABSORBED DOSE


mean energy released by ionizing radiation to matter per mass unit Gray - [Gy] = joules per kilogram Why radiation chemistry @ nuclear engineering?

We have the answer!

Ionizing Radiations can be a <u>particular and uncommon</u> <u>reagent</u> able to promote unexpected chemical reactions in materials

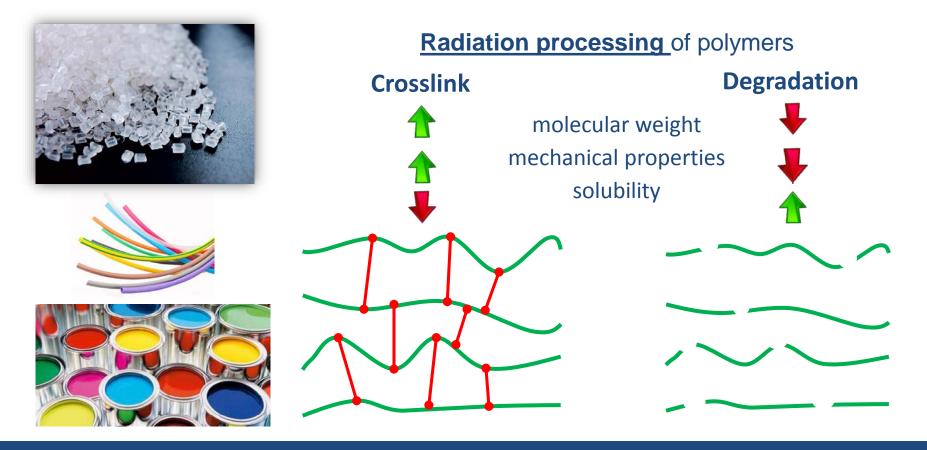
> This is the domain of RADIATION CHEMISTRY in the Nuclear Engineering Field

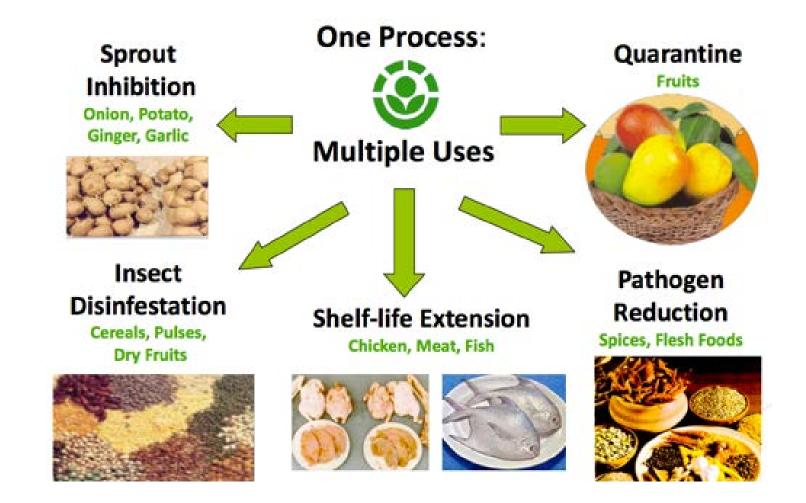


Generally, by means of Radiation Chemistry, we can study Radio-induced modifications on materials and matrices:

- To improve their properties
- To modify their structures
- To study the **ageing** of materials
- To enhance the **degradation** for material recycling purposes
- To sterylize medical devices, cosmetics and pharmaceuticals
- To improve the food shelf-life
- To destroy tumur tissues (radiotherapy)
- To measure the dose of radiation (CHEMICAL RADIATION DOSIMETERS)

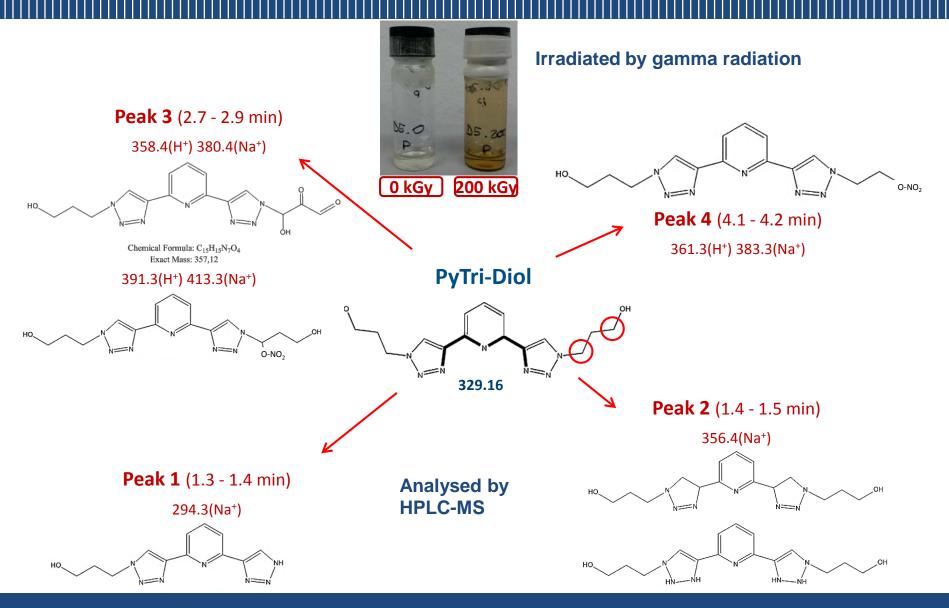
Some research topics @ PoliMi:


- Polymer irradiation
- Food irradiation
- Partitioning of spent nuclear fuel: radiolytic degradation of extractants and diluents
- Chemical dosimeters


Polymer Irradiation

Plastics are extensively used in several applications, some involving ionizing radiations:

- Sterilization of medical supply
- *Packaging* for food irradiation
- Nuclear and aerospatial applications


12

POLITECNICO MILANO 1863

13

Partitioning: Radiolytic Degradation

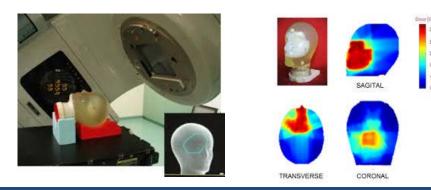
POLITECNICO MILANO 1863

14

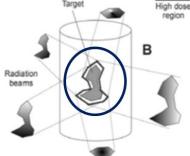
CONFORMATIONAL RADIOTHERAPY TREATMENTS

<u>AIM</u>: destroy cancer cells using radiation <u>OPEN ISSUE</u>: accurate identification of target volume by advanced diagnostic imaging techniques

ACCURATE MEASUREMENTS OF THE 3D ABSORBED DOSE SPATIAL DISTRIBUTION

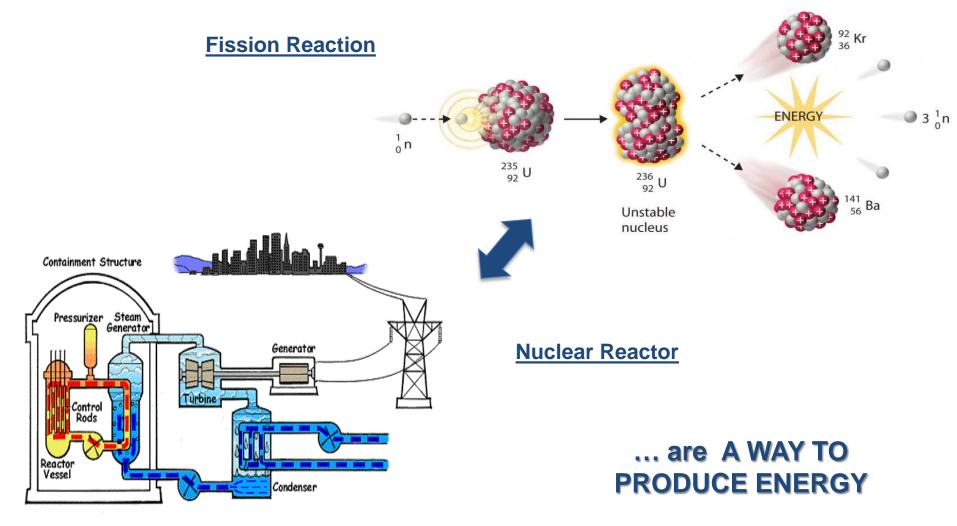

GEL CHEMICAL DOSIMETERS (POLIMERIC GEL / FRICKE-XO GEL)

chemical change within the gel directly proportional with the absorbed dose


ANTROPOMORPHIC PHANTOM

simulating the patient during the radiotherapy treatment for the dose map verification

POLITECNICO MILANO 1863



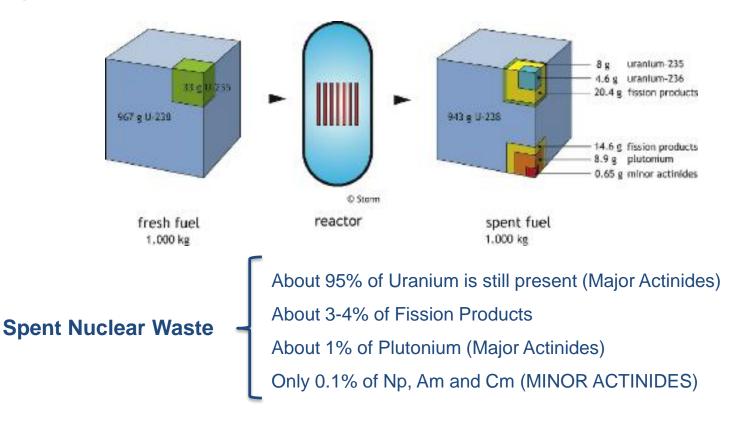
Why radiochemistry @ nuclear engineering?

We can find the answer !

POLITECNICO MILANO 1863

FROM THE NUCLEAR ENGINEERING POINT OF VIEW...

FROM THE CHEMICAL POINT OF VIEW...


Nuclear reactions
and reactors... are an extraordinary WAY TO PRODUCE CHEMICAL ELEMENTS!!!
... also new transuranic (Pu, Am, ...) and missing elements (Tc, Pm)

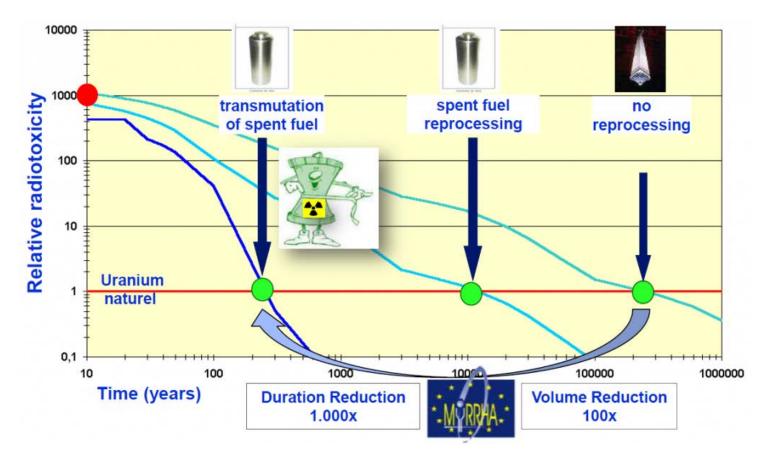
																					. 	<u> </u>
		H	~	² He													Fission	n Products				
				Be											⁵в	ိင	⁷ N	°	° F	¹⁰ Ne	33Xe	5.3 d
A «NEW» PERIODIC TABLE				12 Mg											13 AI	14 Si	¹⁵ P	¹⁶ S	¹⁷ CI	¹⁸ A	131I	8.0 d
can be generated by Spent Nuclear Fuel and Nuclear Reactions			¹⁹ K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	²⁸ Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	зя Se	35 Br	≫ Kr	134Cs	2.0 y
			37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	48 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	≌ Te	53 I	54 Xe	137Cs	30.0 y
			°Cs	Ba	Ln	72 Hf	73 Ta	⁷⁴ W	75 Re	76 Os	″r	78 Pt	79 Au	80 Hg	81 Ti	82 Pb	Bi	84 Po	85 At	® Rn	132Te	78.0 h
Minor/Major Actinides			⁸⁷ Fr	88 Ra	a An Rf Db Sg Bh Hs Mt Uun											89Sr	52.0 d					
		L			!		I	I		I	I	·	1							_	90Sr	28.0 y
239Np	<u> </u>	Lan	thani	des	57 La	58 Ce	⁵⁰ Pr	60 Nd	ei Pm	62 Sm	Eu	64 Gd	⁶⁵ ТЬ	ee Dy	67 Ho	68 Er	eo Tm	70 Yb	71 Lu	Ī	140Ba	12.8 d
238Pu	86.0 y	Ac	tinid	25	89 Ac	90 Th	91 Pa	92 U	^{ରେ} Np	94 Pu	96 Am	∞ Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	t	95Zr	1.4 h
	24 400.0		Major Actinides (MA)												99Mo	67.0 h						
239Pu	24 400.0	Fission products Activation products													103Ru	39.6 d						
2400															106Ru	1.0 y						
240Pu	6 580.0 y	This is the domain of								141Ce	33.0 d											
<u>241Pu 13.2 y</u>				RADIOCHEMISTRY													144Ce	285.0 d				
242Cm	163.0 d																				·····	······

POLITECNICO MILANO 1863

18

Focusing on Nuclear Fuel...

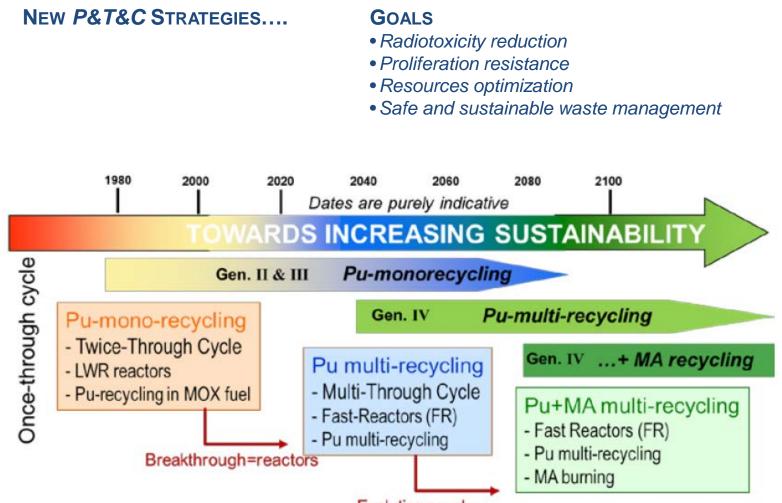
How to manage the Nuclear Waste?



... Another domain of RADIOCHEMISTRY

POLITECNICO MILANO 1863

19


WHY A CHEMICAL TREATMENT OF SPENT NUCLEAR FUEL?

New Strategies....

Mario Mariani

POLITECNICO MILANO 1863

Evolution=cycle

POLITECNICO MILANO 1863

POLITECNICO MILANO 1863

Mario Mariani

Actinides

Radiochemistry

Some research topics @ PoliMi:

- Decommissioning and Nuclear waste management
 - Radiochemical characterization of:

Partitioning of spent nuclear fuel

- waste from industrial plants (TENORM),
- waste from nuclear power plants,
- waste from nuclear medicine activities,
- environmental contaminated matrices,
- inert matrices for the confinement of radionuclides.

- Gen IV Systems for Transmutation of Minor Actinides: Lead-cooled Fast Reactors
 - Fuel-coolant chemical interactions by theoretical and experimental investigations.

Hydrometallurgical processes for separation of fission products, Major and Minor

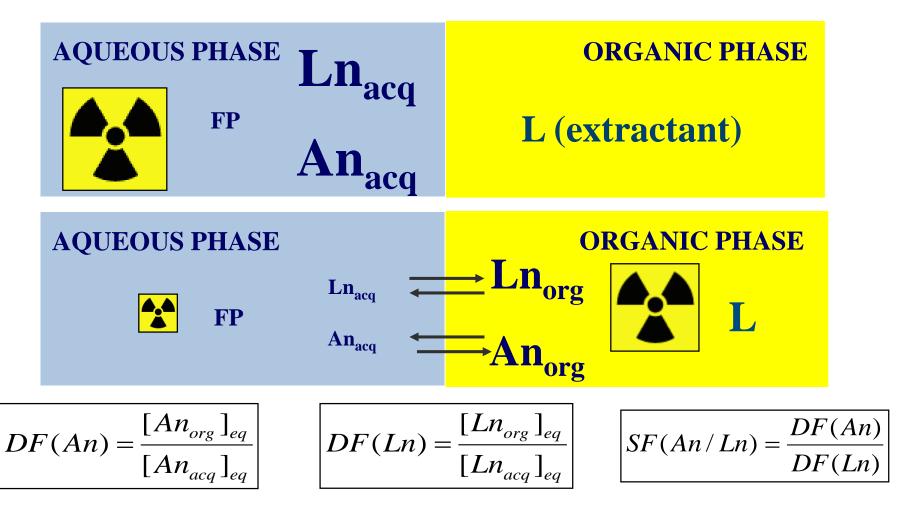
DECOMMISSIONING AND NUCLEAR WASTE MANAGEMENT

Radiochemical analyses of waste from nuclear power plants or industrial plants (TENORM)

23

Mario Mariani

Radiometric counting (Alpha-Beta LSC, Alfa & Gamma-X Spectrometry)


ICP-MS analyses of materials and environmental matrices

Isotopic analysis at trace and ultra-trace level

POLITECNICO MILANO 1863

PARTITIONING OF SPENT NUCLEAR FUEL

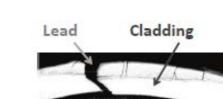
POLITECNICO MILANO 1863

24

POLITECNICO MILANO 1863

25

Experimental studies Onerous and hazardous


accidental operation conditions

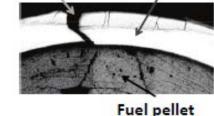
studies azardous

Chemical interaction between fuel-coolant due

to cladding failure event during nominal and

<u>Theoretical studies</u> Support and address for experimental activities

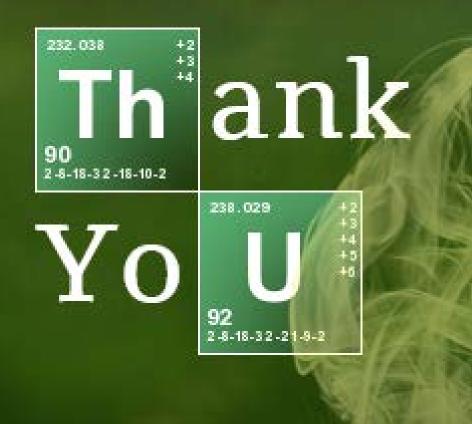
Radiochemistry


GEN IV SYSTEMS FOR TRANSMUTATION OF MINOR ACTINIDES

Lead-cooled Fast Reactor

- use a closed fuel cycle
- burners of minor actinides

Le


GOAL

So, these few slides ...

... to show you some interesting link between chemistry and nuclear world

... then to strongly support the study of Applied Radiochemistry & Radiation Chemistry...

