

Radiochemistry and Monte Carlo integrated approach to radiological characterization for nuclear facilities decommissioning

Eros Mossini

G. Parma, F.M. Rossi, M. Giola, A. Cammi, E. Macerata, E. Padovani, and M. Mariani

* Politecnico di Milano, Department of Energy, Nuclear Engineering Division

14th CHERNE Workshop, Macugnaga, 30 May, 2018

Outline of the presentation

i. INTRODUCTION

- Radiological characterization for Decommissioning
- L-54M reactor

ii. SCOPE OF THE WORK

iii. STEP 1

- Why MCNP?
- Model development
- Model Verification

iv. STEP 2

- Activation reactions
- Impurities distributions

v. STEP 3

- Assessment of activation
- Model Validation

vi. CONCLUSIONS AND FUTURE WORKS

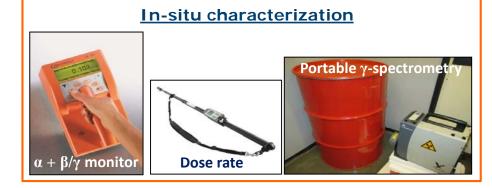
After nuclear reactor shut-down

... several possible strategies

- 1. Immediate dismantling \rightarrow **Decon**
- 2. Postponed dismantling \rightarrow *Safe storage*
- 3. Entombment

Technical, economical, social and political factors influence the strategy choice

PURPOSES:


- 1. Restoration of **unrestricted re-use condition** (greenfield/brownfield);
- 2. Reduction of **costs** and financial risk;
- 3. Reduction of **radiological/contamination risk** to operators/public/environment;

- Optimization of material recycling;
- 5. Better resources exploitation

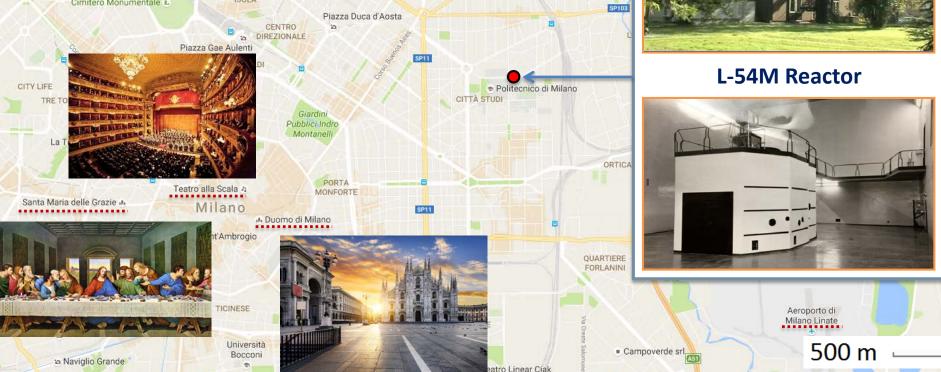
MAIN OPERATIONS

- 1. Preliminary radiological characterization
- 2. Decontamination
- 3. Dismantling and Confinement

In-lab characterization

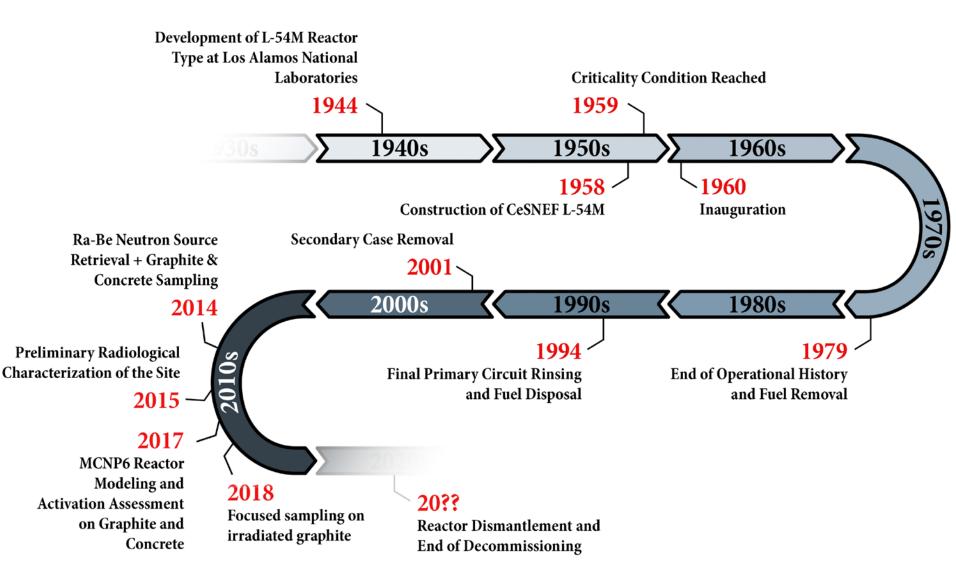
separation

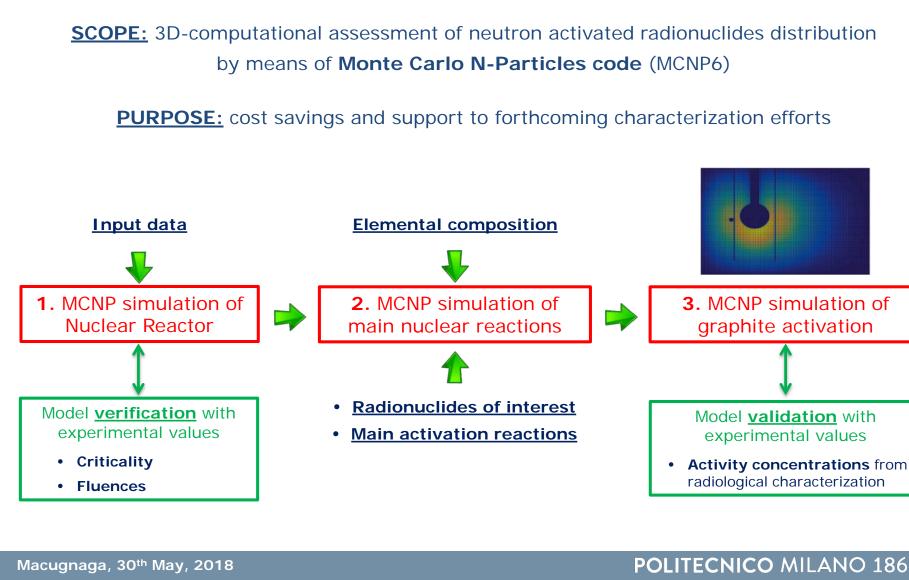
 γ -spectrometry


POLITECNICO MILANO 1863

Sample preparation and radiochemical

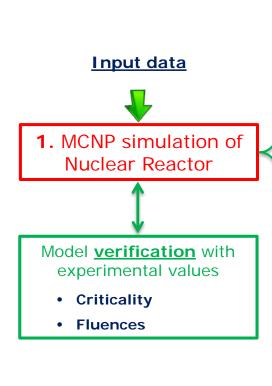
3


L-54M Reactor and Milano city



POLITECNICO MILANO 1863

L-54M Reactor history



SCOPE: 3D-computational assessment of neutron activated radionuclides distribution

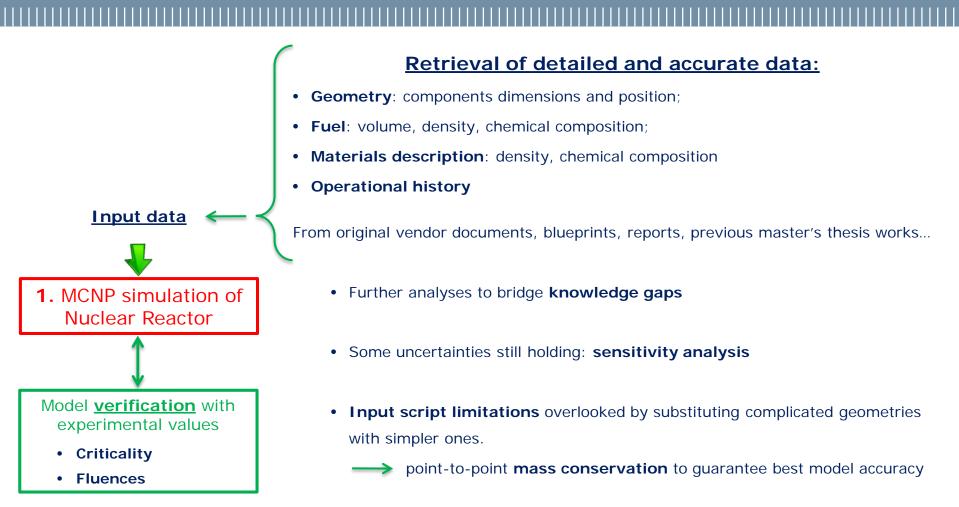
Preliminary radiological characterization

PURPOSE: cost savings and support to forthcoming characterization efforts

- MCNP (Monte Carlo N-Particle, version 6) transport code has been chosen to develop the Radiochemistry and Monte Carlo integrated approach
 - Well-established and validated;
 - Reliable;
 - Suitable to study thermal neutron diffusion and activation reaction rates;
 - Possible coupling with CAD

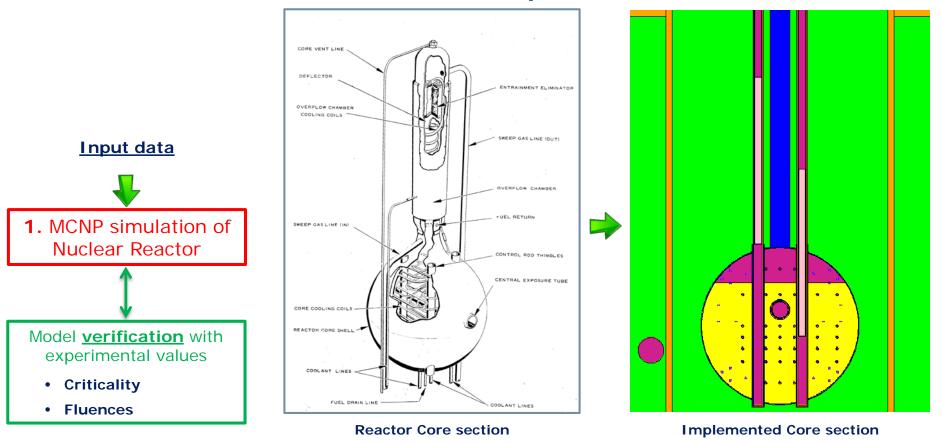
T. Goorley et al. Nuclear Technology, 180(3):298 – 315, 2012

 ENDF and JEFF cross-section libraries have been selected for the simulations


POLITECNICO MILANO 1863

Los Alamos

NATIONAL LABORATORY


- EST.1943 -

STEP 1: Model development

STEP 1: Model development

Example: L-54M model

neray Agency Atoms for Peace

Macugnaga, 30th May, 2018

STEP 1: Model verification

Criticality verification

KCODE card has been used for criticality simulations to determine neutron multiplication factor (k_{eff}) in a multiplying medium

Examples of criticality parameters:

 \rightarrow

 \rightarrow

 \rightarrow

 \rightarrow

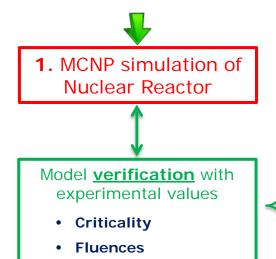
- Subcritical reactivity
- control rods completely inserted control rods completely withdrawn \rightarrow
- Supercritical reactivity
- Total rod worth
- Control rods inventory
- Control rod calibration
- control rod stepwisely moved from fully inserted to completely extracted position, with others withdrawn

sum of Subcritical and Supercritical reactivity

control rod inserted and others withdrawn

TMP card has been used with makxsf code to perform simulations at real working conditions (i.e. at non ambient temperature), thus considering temperature effect on cross sections and collision kinematics.

Fluences verification


F2 and F4 tallies have been used to determine the flux of particles with determined Energy crossing a surface or volume respectively.

F7 tally has been used to normalize the flux on the energy produced by fission events in the core region

$$\Phi_{norm}[cm^{-2} \cdot J^{-1}] = \frac{F2 \text{ or } F4 [cm^{-2}]}{F7 [MeV \cdot g^{-1}] \cdot F7_{mass} \cdot (MeV \to J)} \xrightarrow{P[W]} \Phi_{norm}[cm^{-2} \cdot s^{-1}]$$

POLITECNICO MILANO 1863

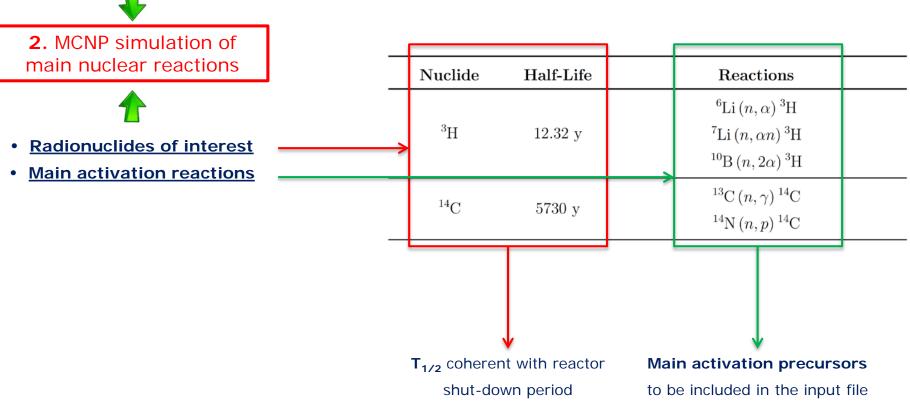
Input data

STEP 1: Model verification

1750 Experimental Calibration Simulated Calibration [ENDF] Simulated Calibration [JEFF] 1500 1250 1000 Δρ [pcm] Input data 750 other rods withdrawn. 500 250 **1**. MCNP simulation of 0 **Nuclear Reactor** 2.5 7.5 10 12.5 15 5 Position [inch] 2.75×10 MCNP Experimental [Chart] Experimental [Terrani] Ē 2.5×10 Model verification with central channel Normalized Thermal Flux [w] 2.25×10 experimental values Criticality 2×10 ٠ deposited by fission events Fluences ٠ 1.75×107 1.5×107 1.25×10 107 10 20 30 40

Distance from Core Center [cm]

Example: L-54M model verification


Simulated vs Experimental control rod calibration

4th control rod simulated moving it from the fully inserted position to the fully extracted one with all

Simulated vs Experimental thermal neutron flux in the

The flux is normalized per energy

Elemental composition •

<u>Elemental composition</u>

2. MCNP simulation of main nuclear reactions

Radionuclides of interest

Main activation reactions

Example: L-54M simulated activation reactions

- T_{1/2} > 2y since L-54M shut-down in 1979;
- Scarce information in the literature about AGOT composition: Activation precursors to be determined in virgin graphite

Nuclide	Half-Life	Reactions	Nuclide	Half-Life	Reactions
$^{3}\mathrm{H}$	12.32 у	6 Li (n, α) 3 H 7 Li $(n, \alpha n)$ 3 H	⁵⁹ Ni	$7.6\cdot 10^4{\rm y}$	$^{58}{ m Ni}\left(n,\gamma ight) ^{59}{ m Ni}$ $^{60}{ m Ni}\left(n,2n ight) ^{59}{ m Ni}$
		$^{10}\mathrm{B}\left(n,2\alpha\right) {}^{3}\mathrm{H}$	60 Co	5.27 y	59 Co (n, γ) 60 Co
$^{14}\mathrm{C}$	5730 у	${ m ^{13}C}(n,\gamma)~{ m ^{14}C}$ ${ m ^{14}N}(n,p)~{ m ^{14}C}$	⁶³ Ni	100 y	$^{63}\mathrm{Cu}(n,p)~^{63}\mathrm{Ni}$ $^{62}\mathrm{Ni}(n,\gamma)~^{63}\mathrm{Ni}$
^{36}Cl	$3\cdot 10^5 \; \mathrm{y}$	$^{35}\mathrm{Cl}\left(n,\gamma\right) {}^{36}\mathrm{Cl}$	⁹³ Mo	4000 y	${}^{92}\mathrm{Mo}\left(n,\gamma\right){}^{93}\mathrm{Mo}$
		$^{39}{ m K}(n,lpha)^{36}{ m Cl}$ $^{40}{ m Ca}(n,lpha p)^{36}{ m Cl}$	$^{94}\mathrm{Nb}$	$2.03\cdot 10^4\mathrm{y}$	$^{93}\mathrm{Nb}\left(n,\gamma\right) ^{94}\mathrm{Nb}$
⁴¹ Ca	10 ⁵ y	$\frac{40 \operatorname{Ca}(n, \gamma)^{41} \operatorname{Ca}(n, \gamma)}{40 \operatorname{Ca}(n, \gamma)^{41} $	⁹⁹ Tc	$2.111\cdot 10^5\mathrm{y}$	$^{-98}$ Mo (n, γ) 99 Mo $\xrightarrow{\beta^-}_{2.74 \text{ d}}$ 99m Tc $\xrightarrow{\text{IT}}_{6.01 \text{ h}}$ 99 Tc
	10 3	54 Fe (n, γ) 55 Fe	^{108m} Ag	418 y	$^{107}\mathrm{Ag}\left(n,\gamma\right)^{108m}\mathrm{Ag}$
55 Fe	2.73 у	56 Fe $(n, 2n)$ 55 Fe	152 Eu	13.54 y	$^{151}\mathrm{Eu}\left(n,\gamma\right) ^{152}\mathrm{Eu}$
⁵⁹ Ni	$7.6 \cdot 10^4 \mathrm{y}$	${\rm ^{58}Ni}\left({n,\gamma } \right)$ ${\rm ^{59}Ni}$	¹⁵⁴ Eu	8.59 y	$^{153}\mathrm{Eu}\left(n,\gamma\right) ^{154}\mathrm{Eu}$
NI	7.0 · 10 · y	60 Ni $(n, 2n)$ 59 Ni	^{233}U	$1.592\cdot 10^5{\rm y}$	$ ^{232}\mathrm{Th}\left(n,\gamma\right) \xrightarrow{233}\mathrm{Th} \xrightarrow{\beta^{-}}_{21.8 \mathrm{ m}} \xrightarrow{233}\mathrm{Pa} \xrightarrow{\beta^{-}}_{26.97 \mathrm{ d}} \xrightarrow{233}\mathrm{U} $
60 Co	5.27 y	${}^{59}\mathrm{Co}\left(n,\gamma\right){}^{60}\mathrm{Co}$	²³⁹ Pu	24110 y	
			fission products	-	235 U (n, f) ; 238 U (n, f) ; 232 Th (n, f)

Elemental composition ٠

2. MCNP simulation of main nuclear reactions

Radionuclides of interest

Main activation reactions ٠

Development of dedicated ICP-MS procedure

- **Oxidation** of graphite powder in a muffle at 650°C for 24 h; **i**.
- **Multistep digestion** of ashes by mixture of acids (HNO₃, HCl, HF); ii.
- **Dilution** by 1% HNO₃; iii.
- iv. ICP-MS analysis.

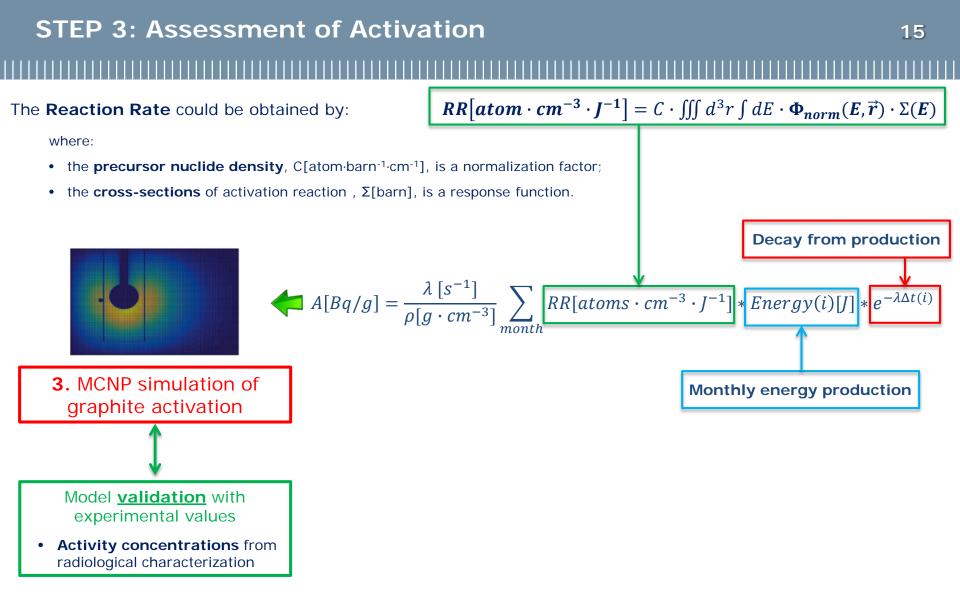
	Element	ppm	Element	ppb
	Li	0.0194 ± 2.7%	В	< LOQ (13.9 ppb)
	AI	1.18 ± 2.9%	Со	9.3 ± 1.5%
	к	1.22 ± 11%	Nb	5.0 ± 8.0%
	Ca	7.97 ± 9.8%	Ag	< LOQ (0.71 ppb)
	Ti	0.622 ± 4.8%	Cs	0.47 ± 4.8%
	v	22.1 ± 1.1%	La	2.8 ± 2.9%
	Fe	2.81 ± 3.2%	Ce	3.2 ± 4.6%
	Ni	1.00 ± 1.3%	Nd	0.38 ± 29%
	Cu	0.208 ± 1.6%	Eu	0.55 ± 4.0%
7	Мо	0.144 ± 1.3%	Th	886 ppt ± 5.0 %

 $0.0595 \pm 1.9\%$

Ba

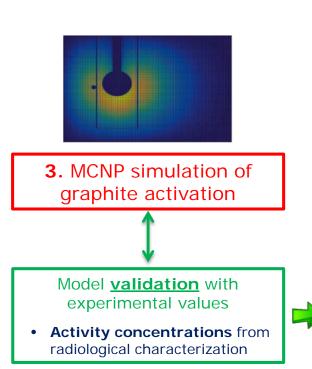
Prompt-Gamma Neutron Activation Analysis (PGNAA).

Heinz Maier-Leibnitz Zentrum


Macugnaga, 30th May, 2018

mta

POLITECNICO MILANO 1863

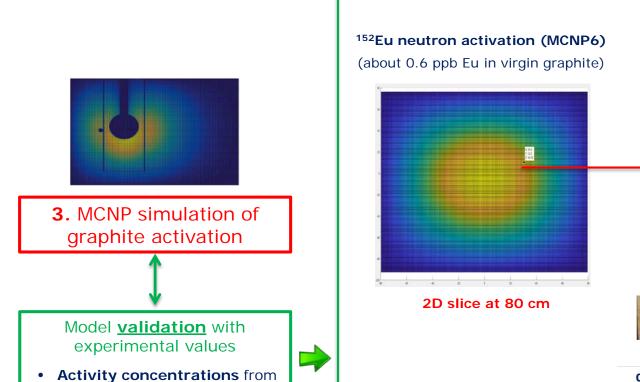

U

66 ppt ± 33%

Macugnaga, 30th May, 2018

STEP 3: Model validation

Example: L-54M pre-characterization


- Extraction of the graphite block;
- Drilling of graphite samples at several radial distances;

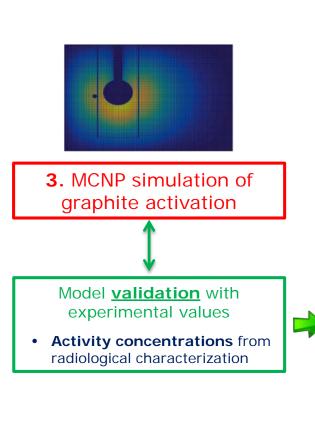
- Gamma spectrometry;
- Sample pre-treatment by **pyrolysis** and ³H and ¹⁴C trapping forfollowing Liquid Scintillation Counting quantification

Radionuclide	0 cm	80 cm	120 cm
³H [Bq⋅g⁻¹]	9170 ± 597	811 ± 54	51.5 ± 3.4
¹⁴ C [Bq⋅g⁻¹]	370 ± 25	37.5 ± 2.6	4.1 ± 0.3
¹⁵² Eu [Bq·g⁻¹]	253.9 ± 18.8	34.3 ± 2.3	4.1 ± 0.3

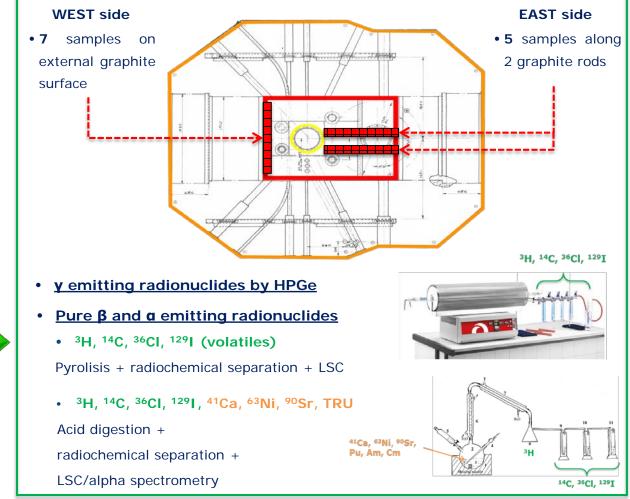
	D slice at 80 cm		Radial distance from the co		
		0 cm		80 cm	120 cm
					_
1	¹⁵² Eu [Bq·g⁻¹]	0 cm	80 cm	120 cm	
	1 2 1 3 3				
	MCNP Simulation	207 ± 1	21.5 ± 0.2	1.8 ± 0.1	
		207 ± 1 253.9 ± 18.8	21.5 ± 0.2 34.3 ± 2.3	1.8 ± 0.1 4.1 ± 0.3	

Example: L-54M model validation

Macugnaga, 30th May, 2018


radiological characterization

POLITECNICO MILANO 1863


Comparison with few

experimental data available

STEP 3: Model validation

Example: further L-54M model validation

POLITECNICO MILANO 1863

Main contributors to Total Activity of L-54M graphite

36CI 14**C** ³H 10^{11} ⁹³Mo ${}^{3}H$ 2018 ^{14}C ⁹⁴Nb 10^{10} ³⁶Cl ⁹⁹Tc ⁴¹Ca ¹³³Ba ⁵⁵Fe ^{134}Cs 10^{9} 152 Eu ⁵⁹Ni 154 Eu 60Co ⁶³Ni Total 10^{8} Total activity [Bq] 10^{7} 10^{6} 10^{5} 10^{4} 1000 100101 10^{5} 10 100 1000 10^{4} 10^{6} 10^{7} 1

Time elapsed from shut-down [y]

3D-Model of Reactor Graphite Activation

1. The integrated computational approach prompted to be a valid support to radiological characterization campaign

In fact, L-54M neutronic model

- 1. proficiently developed,
- 2. verified by comparing simulated and experimental criticality and fluences data;
- 3. validated by comparing simulated and experimental radiometric data.
- 2. The approach is general and applicable to other nuclear facilities

Future works on L-54M reactor model

- Light and volatile impurities determination in virgin graphite by PGNAA and NAA.
- Ultimate model validation by additional radiometrical analyses on recently collected graphite samples: ³H, ¹⁴C, ³⁶Cl, ⁴¹Ca, ⁶³Ni...

Any questions?

eros.mossini@polimi.it