OPTIMIZATION OF MEDICAL ACCELERATORS PROJECT

TUMOR TRACKING IN PARTICLE THERAPY

ESR8: Hanen ZIRI

12-13 MARCH 2018 OMA TOPICAL WORKSHOP - PSI

The integration of the adaptive particle therapy in clinical practice consists of two major approaches:

- (I) Treatment preparation by measuring the target displacement which includes acquisition of breathing motion, target delineation and treatment simulations
- (2) Treatment delivery where irradiation is delivered to the patient under free breathing conditions using real-time respiratory motion tracking system

Intra- and inter-fractional motion

Baseline shift

Baseline shift observed on two overlaid CBCT scans

Water equivalent path length variation

Coronal Δ WEL maps at end-inhale (a) and end-exhale (b) phase. Tumor region is identified by a dotted circle, while ROI in the lungs are identified by solid circles.

Interplay effect

(a) Dose distribution delivered with a scanned beam to a static target. (b) Dose distribution delivered to a moving target: the interplay effect is clearly visible.

Tracking as a motion mitigation technique

"... **Tracking** attempt to make the particle beam follow the target motion, which entails the real-time modulation of the beam direction and energy, to accurately conform the delivered dose to the target motion without increasing the treatment time..."

*Vedam et al., 2013

Motion monitoring systems

Optical tracking @CNAO

Optical tracking framework

Experimental results

Gating & rescanning

Tracking

- Compensates well for motion-induced interplay effect within the target volume
- ➤ Long treatment time due to breathing irregularities

- ➤ Better compensation for motion-induced interplay effect within the target volume and its borders
- ➤ Significant treatment time reduction expected
- ➤ Making better use of the extracted particle beam

Conclusion

- The choice of a specific motion monitoring solution for PBS proton therapy is strongly influenced by the working environment and treatment unit design.
- Remaining challenge of ensuring that delivered plans are robust to range uncertainties in proton therapy.
 - Global motion models for adaptive strategies
 - Need for beam energy modulation strategy for longitudinal motion compensation
- Real-time feedback on delivered dose variation as well as anatomical changes for respiratory correlated treatment
- Need to perform clinical studies to investigate which approach is the best in a given clinical situation.

Thank you!

Optimization of Medical Accelerators (OMA) Horizon2020 Marie Skłodowska-Curie Grant Agreement No 675265

Conclusion

