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The Problem to Solve, in Terms of TTree::Draw

Draw("Muon_pt", "Muon_eta> 1")  
Draw("Muon_pt", "Muon_eta[0] > 1")
Draw("Muon_pt[0]", "Muon_eta[0] > 1")
Draw("Muon_pt[1]", "Muon_eta[0] > 1")
Draw("Muon_pt[0]", "Sum$(Muon_pt*(Muon_eta > 1)) > 30")
Draw("Muon_pt", "Sum$(Muon_pt*(Muon_eta > 1)) > 30")
Draw("hg[2][][36]:timesamp[]+(dacinj/4096):dacinj")
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People do this, we 
need to help them

From Last meeting, https://indico.cern.ch/event/607858/
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Some High Level Guidelines

We need easy paths for:
▶ Implicit (nested) for loops
▶ Operations between same size collections resulting in a 

collection
▶ Operations on collections resulting in a collection or a 

number
● E.g. calling a method element by element and storing results, Sum

Challenging but opportunity for more optimisations and data 
parallelism
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Example Opportunity

Sum$(Muon_pt*(Muon_eta > 1))
This is a cut + a sum over elements in a collection
▶ Parallelise multiplications
▶ Parallelise on the accumulation

Autovectorisation, veccore… Details.
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Proposals for 
Concrete 

Improvements



Minimal Set of Elements Needed

1) A library allowing easy operations (math, math functions 
etc.) between collections, collections and scalars

2) Upgrade TDF to avoid Define nodes for histogramming
- tdf.Histo1D(model, myExpr, {”col1”, ”col2”}) instead of                               

tdf.Define(“q”, myExpr, {”col1”, ”col2”}).Histo1D(model, “q”)

- tdf.Histo1D(model, “myExpr”) instead of                                                        
tdf.Define(“q”, “myExpr”).Histo1D(model, “q”)

Today we focus on 1)
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VecOps

A library that:
▶ Allows to do things like sqrt(v0*v0+v1*v1)/3  where v0 

and v1 are collections
▶ Main item: TVec<T> 

● Same interface of a std::vector (it is a vector, with a special allocator)
● Contiguous in memory (yes, to vectorise)
● Operations such as *,/,-,+,>,==,< & co are possible
● Math functions are implemented
● Owns its content but can be a view on a contiguous memory region (to 

wrap TTreeReaderArrays for example)
▶ This exists, it’s VecOps https://github.com/dpiparo/VecOps
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https://github.com/dpiparo/VecOps


VecOps

Up to here two aspects mentioned:
▶ Easy, vectorised operations on collections, per se
▶ Integrated in TDF for making analysis easier and more 

efficient
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Operations on Collections: Examples
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TDF Integration: Examples
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It is also a view, until one 
reallocates!
Copy performed, then “normal” 
container
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TDF Integration: Examples
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Integrated with ROOT in a private branch
https://github.com/dpiparo/root/tree/vecopsIntegration

https://github.com/dpiparo/root/tree/vecopsIntegration


Implementation Detail

TVec<T> is a vector with a special allocator.
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