
https://root.cern

ROOT
Data Analysis Framework

VecOps: Express easily common
operations on collections

Danilo Piparo, Enric Tejedor, Enrico Guiraud

https://root.cern

The Problem to Solve, in Terms of TTree::Draw

Draw("Muon_pt", "Muon_eta> 1")
Draw("Muon_pt", "Muon_eta[0] > 1")
Draw("Muon_pt[0]", "Muon_eta[0] > 1")
Draw("Muon_pt[1]", "Muon_eta[0] > 1")
Draw("Muon_pt[0]", "Sum$(Muon_pt*(Muon_eta > 1)) > 30")
Draw("Muon_pt", "Sum$(Muon_pt*(Muon_eta > 1)) > 30")
Draw("hg[2][][36]:timesamp[]+(dacinj/4096):dacinj")

2

People do this, we
need to help them

From Last meeting, https://indico.cern.ch/event/607858/

https://indico.cern.ch/event/607858/

Some High Level Guidelines

We need easy paths for:
▶ Implicit (nested) for loops
▶ Operations between same size collections resulting in a

collection
▶ Operations on collections resulting in a collection or a

number
● E.g. calling a method element by element and storing results, Sum

Challenging but opportunity for more optimisations and data
parallelism

3From Last meeting, https://indico.cern.ch/event/607858/

https://indico.cern.ch/event/607858/

Example Opportunity

Sum$(Muon_pt*(Muon_eta > 1))
This is a cut + a sum over elements in a collection
▶ Parallelise multiplications
▶ Parallelise on the accumulation

Autovectorisation, veccore… Details.

4From Last meeting, https://indico.cern.ch/event/607858/

https://indico.cern.ch/event/607858/

Proposals for
Concrete

Improvements

Minimal Set of Elements Needed

1) A library allowing easy operations (math, math functions
etc.) between collections, collections and scalars

2) Upgrade TDF to avoid Define nodes for histogramming
- tdf.Histo1D(model, myExpr, {”col1”, ”col2”}) instead of

tdf.Define(“q”, myExpr, {”col1”, ”col2”}).Histo1D(model, “q”)

- tdf.Histo1D(model, “myExpr”) instead of
tdf.Define(“q”, “myExpr”).Histo1D(model, “q”)

Today we focus on 1)

6

VecOps

A library that:
▶ Allows to do things like sqrt(v0*v0+v1*v1)/3 where v0

and v1 are collections
▶ Main item: TVec<T>

● Same interface of a std::vector (it is a vector, with a special allocator)
● Contiguous in memory (yes, to vectorise)
● Operations such as *,/,-,+,>,==,< & co are possible
● Math functions are implemented
● Owns its content but can be a view on a contiguous memory region (to

wrap TTreeReaderArrays for example)
▶ This exists, it’s VecOps https://github.com/dpiparo/VecOps

7

https://github.com/dpiparo/VecOps

VecOps

Up to here two aspects mentioned:
▶ Easy, vectorised operations on collections, per se
▶ Integrated in TDF for making analysis easier and more

efficient

8

VecOps

Up to here two aspects mentioned:
▶ Easy, vectorised operations on collections, per se
▶ Integrated in TDF for making analysis easier and more

efficient

9

Operations on Collections: Examples

10
https://github.com/dpiparo/VecOps/blob/master/test/intro.C

https://github.com/dpiparo/VecOps/blob/master/test/intro.C

Operations on Collections: Examples

11
https://github.com/dpiparo/VecOps/blob/master/test/intro.C

https://github.com/dpiparo/VecOps/blob/master/test/intro.C

Operations on Collections: Examples

12
https://github.com/dpiparo/VecOps/blob/master/test/intro.C

https://github.com/dpiparo/VecOps/blob/master/test/intro.C

Operations on Collections: Examples

13
https://github.com/dpiparo/VecOps/blob/master/test/intro.C

https://github.com/dpiparo/VecOps/blob/master/test/intro.C

VecOps

Up to here two aspects mentioned:
▶ Easy, vectorised operations on collections, per se
▶ Integrated in TDF for making analysis easier and more

efficient

14

TDF Integration: Examples

15https://github.com/dpiparo/VecOps/blob/master/test/intro.C

It is also a view, until one
reallocates!
Copy performed, then “normal”
container

https://github.com/dpiparo/VecOps/blob/master/test/intro.C

TDF Integration: Examples

16

Integrated with ROOT in a private branch
https://github.com/dpiparo/root/tree/vecopsIntegration

https://github.com/dpiparo/root/tree/vecopsIntegration

Implementation Detail

TVec<T> is a vector with a special allocator.

17

