
Making fitting in RooFit faster
Automated Parallel Computation of Collaborative Statistical Models

Patrick Bos
Sarajevo, 10 Sep 2018

Automated Parallel Computation of Collaborative Statistical Models

Physics: Wouter Verkerke (PI), Vince Croft, Carsten Burgard

eScience: Patrick Bos (yours truly), Inti Pelupessy, Jisk Attema

RooFit: Collaborative Statistical Modeling

Collaborative Statistical Modeling

• RooFit: build models together
• Teams 10-100 physicists
• Collaborations ~3000

à ~100 teams
• 1 goal
• Pretty impressive to an

outsider

Collaborative Statistical Modeling with RooFit

Making RooFit faster (~30x; ~h à ~m)

• More efficient collaboration
• Faster iteration/debugging
• Faster feedback between teams
• Next level physics modeling ambitions,

retaining interactive workflow
1. Complex likelihood models, e.g.

a) Higgs fit to all channels, ~200 datasets, O(1000)
parameter, now O(few) hours

b) EFT framework: again 10-100x more expensive
2. Unbinned ML fits with very large data samples
3. Unbinned ML fits with MC-style numeric integrals

Higgs @ ATLAS
20k+ nodes, 125k hours

Expression tree of C++ objects for mathematical components (variables,
operators, functions, integrals, datasets, etc.)

Couple with data, event “observables”

Goals and Design: Make fitting in RooFit faster

Making fitting in RooFit faster: how?

Serial:

benchmarks show no obvious bottlenecks

RooFit already highly optimized (pre-calculation/memoization, MPFE)

Parallel

Faster fitting: (how) can we do it?

Levels of parallelism

1. Gradient (parameter partial

derivatives) in minimizer

2. Likelihood

3. Integrals (normalization) &

other expensive shared

components

likelihood:
events

likelihood:
(unequal)

components

integrals etc.

“Vector”

Faster fitting: (how) can we do it?

Heterogeneous: sizes, types
• Multiple strategies
• How to split up?
• Small components à need low

latency/overhead
• Large components as well…
• How to divide over cores?
• Load balancing à task-based

approach: work stealing

likelihood:
events

likelihood:
(unequal)

components

integrals etc.

Design: MultiProcess task-stealing framework

Task-stealing, worker pool, executes Job tasks

No threads, process-based: “bipe”

(BidirMMapPipe) handles fork, mmap, pipes

Master Queue

Worker 1

Worker 2

...

bipesbipe

Master: main RooFit process, submits Jobs to queue, waits for results (or does other things in between)

Worker requests
Job task Queue pops task Worker executes

task
Worker sends
result Queue ... repeat ...

Job done: Queue
sends to Master

on request
worker loop:

queue loop: act on input from Master or Workers (mainly to avoid loop in Master / user code)

template <class T> class MP::Vector :
public T, public MP::Job

Parallelized
class

MP::Vector

MP::Job

MP::TaskManager

Serial class

likelihood, gradient..

MultiProcess usage for devs

template <class T> class MP::Vector : public T, public MP::Job
class Parallel : public MP:Vector<Serial>

Parallelized
classMP::Vector

MP::Job

MP::TaskManager

Serial class

MultiProcess usage for devs

class xSquaredSerial {
public:
xSquaredSerial(vector<double> x_init)

: x(move(x_init))
, result(x.size()) {}

virtual void evaluate() {
for (size_t ix = 0; ix < x.size(); ++ix) {

x_squared[ix] = x[ix] * x[ix];
}

}

vector<double> get_result() {
evaluate();
return x_squared;

}

protected:
vector<double> x;
vector<double> x_squared;

};

class xSquaredParallel
: public RooFit::MultiProcess::Vector<xSquaredSerial> {

public:
xSquaredParallel(size_t N_workers, vector<double> x_init) :

RooFit::MultiProcess::Vector<xSquaredSerial>(N_workers, x_init)
{}

private:
void evaluate_task(size_t task) override {

result[task] = x[task] * x[task];
}

public:
void evaluate() override {

if (get_manager()->is_master()) {
// do necessary synchronization before work_mode

// enable work mode: workers will start stealing work from queue
get_manager()->set_work_mode(true);

// master fills queue with tasks
for (size_t task_id = 0; task_id < x.size(); ++task_id) {

get_manager()->to_queue(JobTask(id, task_id));
}

// wait for task results back from workers to master
gather_worker_results();

// end work mode
get_manager()->set_work_mode(false);

// put gathered results in desired container (same as used in serial class)
for (size_t task_id = 0; task_id < x.size(); ++task_id) {

x_squared[task_id] = results[task_id];
}

}
}

};

template <class T> class MP::Vector : public T, public MP::Job

MultiProcess for users

vector<double> x {1, 4, 5, 6.48074};

xSquaredSerial xsq_serial(x);

size_t N_workers = 4;
xSquaredParallel xsq_parallel(N_workers, x);

// get the same results, but now faster:
xsq_serial.get_result();
xsq_parallel.get_result();

// use parallelized version in your existing functions
void some_function(xSquaredSerial* xsq);

some_function(&xsq_parallel); // no problem!

Parallel performance (MPFE & MP)

Likelihood fits (unbinned, binned)
Numerical integrals
Gradients

Parallel likelihood fits: unbinned, MPFE

Before: max ~2x
Now (with CPU affinity fixed):

max ~20x (more for larger fits)

Run-time vs N(cores)

Actual performance

Expected
performance (ideal

parallelization)

Parallel likelihood fits: binned

Run-time vs N(cores) in binned fits

Actual performance

Expected
performance (ideal

parallelization)

CPU time (single core)

Room for
improvement

WIP

Gradient parallelization

0th step: get Minuit to use external derivative
1st step: replicate Minuit2 behavior
• NumericalDerivator (Lorenzo)
• Modified to exactly (floating point bit-wise) replicate Minuit2

• à RooGradMinimizer

2nd step: calculate partial derivative for each parameter in
parallel

Gradient parallelization

First benchmarks (yesterday):

ggF workspace (Carsten), migrad fit

scaling not perfect and erratic (+/- 5s)

similar as we saw for likelihoods without CPU pinning

probably due to too much synchronization

RooMinimizer MultiProcess GradMinimizer

- 1 worker 2 workers 3 workers 4 workers 6 workers 8 workers

28s 33s 20s 15s 14s 17s (…) 11s

Let’s stay in touch
+31 (0)6 10 79 58 74

p.bos@esciencecenter.nl

www.esciencecenter.nl

egpbos

linkedin.com/in/egpbos

blog.esciencecenter.nl

Encore

Future work

Load balancing
PDF timings change dynamically due to RooFit precalculation strategies
… not a problem for numerical integrals

Analytical derivatives (automated? CLAD)

Numerical integrals

“Analytical” integrals

Forced numerical (Monte
Carlo) integrals

(Higgs fits didn’t have them)

Numerical integrals

Maxima

Individual NI timings
(variation in runs and iterations)

Minima

Sum of slowest integrals/cores
per iteration over the entire run

(single core total runtime: 3.2s)

Faster fitting: MultiProcess design

RooFit::MultiProcess::Vector<YourSerialClass>

Serial class: likelihood (e.g. RooNLLVar) or gradient (Minuit)

Interface: subclass + MP

Define ”vector elements”

Group elements into tasks (to be executed in parallel)

RooFit::MultiProcess::SharedArg<T>

RooFit::MultiProcess::TaskManager

Faster fitting: MultiProcess design

RooFit::MultiProcess::Vector<YourSerialClass>

RooFit::MultiProcess::SharedArg<T>

Normalization integrals or other shared expensive objects

Parallel task definition specific to type of object

… design in progress

RooFit::MultiProcess::TaskManager

Faster fitting: MultiProcess design

RooFit::MultiProcess::Vector<YourSerialClass>

RooFit::MultiProcess::SharedArg<T>

RooFit::MultiProcess::TaskManager

Queue gathers tasks and communicates with worker pool

Workers steal tasks from queue

Worker pool: forked processes (BidirMMapPipe)
• performant and already used in RooFit
• no thread-safety concerns
• instead: communication concerns
• … flexible design, implementation can be replaced (e.g. TBB)

Single core profiling and improvements

Faster fitting: single core profiling with Callgrind, Cachegrind, Instruments !

Higgs ggf & 9 channel fits (workspaces by Lydia Brenner)

Most time spent on:

1. Memory access à RooVectorDataStore::get() (4% / 32%), 0.3% LL

cache misses (expensive!)
• Row-wise access pattern on column-wise data store (and std::vector<std::vector>)

2. Logarithms: 12%

3. Interpolation à RooStats::HistFactory::FlexibleInterpVar (10%)

Faster fitting: single core improvements

RooLinkedList::findArg: ~ 5% of memory access instructions

RooLinkedList::At took considerable time in Gaussian test fit (Vince)

std::vector lookup à 1.6x speedup! WIP

Faster fitting: future work

Reorder tree evaluation à CPU cache use, vectorization

Smarter fitting (stochastic minimizer, analytical gradient, CLAD)

Front-end / back-end separation (e.g. TensorFlow back-end)

Faster fitting: single core profiling meta-conclusions

profiling functions & classes
valgrind
gprof
Instruments
… etc.

profiling objects (e.g. call-trees, e.g. RooFit…)
… DIY?

More Multi-Core

Parallel likelihood fits: existing RooFit implementation details

RooRealMPFE / BidirMMapPipe

Custom multi-process message passing protocol

• POSIX fork, pipe, mmap

Communication “overhead” (delay between sending and receiving

messages): ~ 1e-4 seconds

• serverLoop waits for message & runs server-side code

• messages used sparingly

• data transfer over memory-mapped pipes

TensorFlow experiments

Fits on identical model & data (single i7 machine)

TensorFlow: No pre-calculation / caching!
Major advantage of RooFit for binned fits (e.g. morphing histograms)
(feature request for memoization https://github.com/tensorflow/tensorflow/issues/5323)

N.B.: measured before CPU affinity fixing
RooFit now even faster (but limited to running one machine)

RooFit (MINUIT) TensorFlow (BFGS)
Unbinned fit 0.1s 0.01 - 0.1s (dep. on precision)

Binned fit 0.7ms 2.3ms

