
ROOT I/O compression
algorithms

Oksana Shadura, Brian Bockelman
University of Nebraska-Lincoln

Introduction
Compression Algorithms

2

Compression algorithms

Lossy Lossless

Audio, video = removing small details
to reduce data size

Txt, binaries, and etc. = only reduction of data size

Impossible to restore back Possible to restore back

Reduces size by permanently
eliminating certain redundant
information

Statistical models can be used to generate codes for specific characters based
on their probability of occurring, and assigning the shortest codes to the most
common data. Common statistical methods: Entropy encoding, run-length
encoding, compression using a dictionary.

3
O.Shadura, B. Bockelman. ROOT I/O compression algorithms. Root User Workshop, September 10-13

History of lossless algorithms

● Morse code, invented in 1838, is the earliest
instance of data compression:

○ Idea most common letters in the English language
such as “e” and “t” are given shorter Morse codes.

● LZ77 algorithm (1977) - “LZ1”
○ First algorithm to use a dictionary to compress data

● LZ78 algorithm (1978) - “LZ2”

4
O.Shadura, B. Bockelman. ROOT I/O compression algorithms. Root User Workshop, September 10-13

Lossless compression: LZ77 & LZ78
● Represent variable-length symbols with fixed-length codes.

● LZ77 and LZ78 are theoretically dictionary coders
● LZ77 maintains a sliding window during compression [it is shown to be equivalent to the

explicit dictionary constructed by LZ78 and they are only equivalent when the entire data
is intended to be decompressed]. Since LZ77 encodes and decodes from a sliding window
over previously seen characters, decompression must always start at the beginning of
the input.

● LZ78 decompression could allow random access to the input only if the entire dictionary
is known in advance.

Figure 2. Deflate algorithm

Figure 1. Sliding window concept

5
O.Shadura, B. Bockelman. ROOT I/O compression algorithms. Root User Workshop, September 10-13

Lossless compression: Huffman algorithm

● Represent fixed-length symbols with variable-length codes.

Huffman tree generated from text "this is an example of a huffman tree".

Output from Huffman's algorithm:
variable-length code table for encoding a
source symbol.

36x8bit = 180 bit
vs

 147 using Huffman coding

https://en.wikipedia.org/wiki/Huffman_coding

6
O.Shadura, B. Bockelman. ROOT I/O compression algorithms. Root User Workshop, September 10-13

ROOT compression algorithms

● ZLIB - LZ77 preprocessor with Huffman coding {old ROOT default}
● Old ROOT compression algorithm (backward compatibility)

● LZMA - LZMA uses a dictionary compression algorithm (a variant of LZ77 with
huge dictionary sizes and special support for repeatedly used match
distances), whose output is then encoded with a range encoder, using a
complex model to make a probability prediction of each bit.

● LZ4 - LZ77-type compressor with a fixed, byte-oriented encoding and no
Huffman coding pass {new ROOT default}

● ZSTD - dictionary-type algorithm (LZ77) with large search window and fast
implementations of entropy coding stage, using either very fast Finite State
Entropy (tANS) or Huffman coding.

7
O.Shadura, B. Bockelman. ROOT I/O compression algorithms. Root User Workshop, September 10-13

ROOT I/O concepts

Entry: The entry is the atomic unit of work - rows
in a table. Each entry is composed of multiple
objects.

Branch: There are similar objects in each entry –
these are organized as branches - like columns
in a table.

Basket: When serialized, ROOT writes (and
compresses) the objects in the same branch –
and from many contiguous entries – into a
basket.

Cluster: All the data from a group of entries is
written contiguously as part of an entry cluster.

B.Bockelman and Z.Zhang [ACAT2017]

Branches
A B C

en
tri

es
A

 B

C

Logical structure

File structure

How works ROOT TTree compression?

● Each basket is compressed and written
to the ROOT file;

Basket (“green” entrys are compressed together)

8

ROOT TTree compression is not a trivial task!

O.Shadura, B. Bockelman. ROOT I/O compression algorithms. Root User Workshop, September 10-13

LZ4

...sadly search gives no logo...but only pictures of
Zeppelin LZ4 aircraft :-)

9

Write Tests - Write Speed and Compression Ratio

10

La
rg

er
 is

 b
et

te
r

Larger is better Test used: roottest-io-compression-make with 2000 entrys

LZ4

LZMA

ZSTD

ZLIB

O.Shadura, B. Bockelman. ROOT I/O compression algorithms. Root User Workshop, September 10-13

Read Speed - Compare across algorithms

11
O.Shadura, B. Bockelman. ROOT I/O compression algorithms. Root User Workshop, September 10-13

LZ4 is default compression algorithm

● It is a good trade off between compression ratio and compression /
decompression speed!

● Was enabled as default in ROOT 6.14.01 (temporary disabled in 6.14.04 for the
further investigation)

● We got reported some corner cases:
○ Tree generated with variable-sized branches embed an “entry offset” array in their on-disk

representation.
○ Genomic data processed by GeneROOT

12

Both cases are involving compression of big arrays of
integers!

We are working on the fix!

O.Shadura, B. Bockelman. ROOT I/O compression algorithms. Root User Workshop, September 10-13

Recommendation to the users
● Ratio between compression ratio and compression/decompression speed:

the best choice is LZ4
● Size of the file: the best choice is LZMA
● Recovering data from partial file (in case of crash): tune AutoSave!

● Default frequency is to save the metadata every 10 clusters or so.
● Memory use or physical I/O performance: tune AutoFlush!

○ Default is number of entries needed to reach 32 Mb of compressed data
○ Can be expressed in number of entries or compressed data size
○ Memory requirement:

i. read and write: AutoFlush frequency in number of entries * average size of an entry.
ii. Plus for reading: AutoFlush frequency in number of entries * average compressed size of

an entry (TTreeCache size)
○ Size of a cluster in compressed size will be the 'unit of reading' when accessing the file

13
O.Shadura, B. Bockelman. ROOT I/O compression algorithms. Root User Workshop, September 10-13

[Thanks for recommendations to Philippe Canal]

Optimization of TTree with Int_V branches:
 AutoFlush(1000000) & kGenerateOffsetMap

14

Challenge: not forward compatible.

O.Shadura, B. Bockelman. ROOT I/O compression algorithms. Root User Workshop, September 10-13

t->SetAutoFlush(1000000);
ROOT::TIOFeatures features;
features.Set(ROOT::Experimental::EIOFeatures::
kGenerateOffsetMap);
t->SetIOFeatures(features);

Future work on compression algorithms

15

ZLIB-CF & ZSTD

16

Future work: Cloudflare ZLIB vs ZLIB - Intel Laptop/Intel Server

17

Laptop / CF-ZLIB

Laptop / ZLIB

Server / C
F-ZLIB

Server / ZLIB

La
rg

er
 is

 b
et

te
r

Note: small dynamic
range for y-axis.

The CF-ZLIB
compression ratios do
change because
CF-ZLIB uses a
different, faster hash
function.

O.Shadura, B. Bockelman. ROOT I/O
compression algorithms. Root User
Workshop, September 10-13

Future work: ZLIB-CF vs. ZLIB

SIMD ZLIB-CF ZLIB

Hash calculation should be
changed for non-SIMD case to
have similar hash calculation
results as it is in case of ZLIB
1.2.8!

18

ZLIB Cloudflare(CF) - https://github.com/cloudflare/zlib/

○ Not actively supported, but much more performant then ZLIB

O.Shadura, B. Bockelman. ROOT I/O compression algorithms. Root User Workshop, September 10-13

Future work: ZSTD - Haswell x 56core - no SSD
La

rg
er

 is
 b

et
te

r

19

LZMA

ZSTD

ZLIB

LZ4

O.Shadura, B. Bockelman. ROOT I/O compression algorithms. Root User Workshop, September 10-13

LZ4: block compression vs streaming compression

● "Block" API : This is recommended for simple purpose. It compress single raw
memory block to LZ4 memory block and vice versa.

● "Streaming" API : This is designed for complex things (compress huge stream
data in restricted memory environment).

Now we are using block compression!

Streaming compression (using compression dictionaries) is supposed to be beneficial in case
of small data (small branches)

20
Planned to be available in ROOT 6.16

O.Shadura, B. Bockelman. ROOT I/O compression algorithms. Root User Workshop, September 10-13

BitShuffle pre-conditioner for LZ4

Bitshuffle is an algorithm that rearranges typed, binary data for improving compression

21

https://sft.its.cern.ch/jira/browse/ROOT-9633

Plan of work:
● Determine how we should expose this functionality (separate algorithm versus

special API to core/zip versus preconditioner chain).
● Switch LZ4 to streaming mode.
● BitShuffle one block at a time (into a thread-local array), then feed individual

8KB blocks to LZ4.
● Cleanup unused BitShuffle code. Remove OpenMP integration (dead code

right now).
● Make BitShuffle use appropriate trampolines to pick AVX2 vs SSE2 version at

runtime.
● Remove debugging statements.
● Work with Philippe to determine the best way to detect "primitive branches" -

right now, that's an ugly hack.
● Implement unzip methods for LZ4.
● Remove LZMA attempt (did not result in improvements).
● Special-case the buffering of the offset array.

(https://github.com/Blosc/c-blosc) is meta-compressor
supporting LZ4, ZLIB, ZSTD with BitShuffle and Shuffle filters

Planned to be available in ROOT 6.16

O.Shadura, B. Bockelman. ROOT I/O compression algorithms. Root User Workshop, September 10-13

Future plans:

● Re-enable LZ4 as a default compression algorithm
● Merge ZLIB-CF developments in ROOT master
● Improve I/O interfaces for easier switching between compression algorithms
● Further work on optimization of compression algorithms in ROOT (using of

compression dictionaries and etc.)
● Introduce the automatized performance benchmarking of ROOT I/O

22
O.Shadura, B. Bockelman. ROOT I/O compression algorithms. Root User Workshop, September 10-13

● This work was supported by the National Science Foundation under Grant
ACI-1450323

23
O.Shadura, B. Bockelman. ROOT I/O compression algorithms. Root User Workshop, September 10-13

Acknowledgements

24

Thank you for your attention!

25

Backup slides

26

Example from ROOT Forum: arrays of Int_v stored in
branches of ROOT TTree

27

Status of updates

Algorithm ROOT Updates Performance

LZMA 5.2.1 5.2.4 No (bug fixes)

ZLIB 1.2.8 1.2.8 + CF Yes

LZ4 1.7.5 1.8.2 Yes

ZSTD (still not
integrated)

Previous test - 1.3.4 1.3.5 Yes

28

Cloudflare zlib vs zlib -AARCH64+CRC32 HiSilicon's Hi1612 processor (Taishan
2180)

29

● Significant improvements for aarch64
with with Neon/CRC32

● Improvement for zlib Cloudflare
comparing to master for:

○ ZLIB-1/Neon+crc32: -31%
○ ZLIB-6/Neon+crc32: -36%
○ ZLIB-9/Neon +crc32-9: -69%
○ ZLIB-1/Neon: -10%
○ ZLIB-6/Neon: -10%
○ ZLIB-9/Neon: -50%

CF-ZLIB/Neon+crc32

CF-ZLIB/Neon

ZLIB/Neon

ZLIB/Neon+crc32

ZLIB-CF:SIMD CRC32 issue

*https://create.stephan-brumme.com/crc32/

We will test “Slicing-by-16” for compression level 1,2,3,4,5 (fast compression)
and “Slicing-by 8” for compression level 6,7,8,9 (slower compression)

30

ZLIB-CF: ROOT performance on a branch without
SIMD

31

