
O.Couet - ROOT User’s Workshop 10 -13 September 2018 1

ROOT 7 Graphics

Olivier Couet (CERN EP-SFT)

O.Couet - ROOT User’s Workshop 10 -13 September 2018 2

Introduction

ROOT 6 GUI is showing its age and need to be rethough in the context of ROOT 7, because:

 It is very ”OS-specific”

 The need to reduce the amount of code to be actively maintained

 A Remote/web GUI is required.

These changes in the GUI will trigger that ROOT Graphics must be “on the web” also.

 Like the rest of ROOT 7, graphics can be reinvent based on 20 years of experience.

 In the past we were very reluctant to base graphics on external tools (like Qt) not being sure of their

lifetime. These days "Web Graphics” is based on widely used technologies (SVG and WebGL) supported

by a very large community (D3.js, THREE.js).

O.Couet - ROOT User’s Workshop 10 -13 September 2018 3

Graphics model (1)

Basic ideas for future ROOT 7 graphics:

• ROOT 7 is running as usual and generates the graphics display list by drawing objects.

 This is the “server side" or “C++ side".

• The graphics display list is sent to a client which can be remote (Web Browser) or local (libChromium).

 This is the “client side" or “JavaScript side". It does the graphics rendering (D3, THREE.js).

O.Couet - ROOT User’s Workshop 10 -13 September 2018 4

Graphics model (2)

Advantages of this model:

• Independent from any local graphics backend (X11 or Cocoa).

• Allows remote display for free on all kind of devices (PC, tablet, phone ..)

• For local display the JavaScript rendering might be performed in a local canvas via libraries like

libChromium.

 A implementation of a such system (client side) already exists for ROOT 6: “JSROOT”

(by Bertrand Bellenot and Sergey Linev).

The initial goal of JSROOT was to read/browse objects in ROOT files and display them in a web browser

using JavaScript.

Once displayed the objects can be manipulated in the web browser (zoomed, scaled, etc…).

It is also used by the ROOT jupyter interface.

O.Couet - ROOT User’s Workshop 10 -13 September 2018 5

Graphics output on files (Batch Output)

Two main kinds of batch output images are required:

1. Vector graphics output like PDF, PostScript, SVG and Latex. In ROOT 6 vector graphics formats are

implemented by native ROOT classes not relying on any external libraries.

2. Bitmap output like png, gif, jpeg tiff etc .. In ROOT 6 the bitmap outputs are implemented natively on top of

libAfterImage.

In ROOT 7:

 Goal: not rely on any native ROOT library.

Still under investigation.

One possibility:

Browsers like Chrome or Firefox provide a "headless" mode. In this mode the complete

HTML/JavaScript/SVG code works without screen display.

The idea would be to use this "headless" mode to generate SVG/PNG/JPEG/PDF images.

Need to find a solution for TeX output

O.Couet - ROOT User’s Workshop 10 -13 September 2018 6

Pad:

• Base entities containing the list of graphics objects to be drawn (Drawable).

• Implemented in the RPad C++ class.

Canvas:

• A window's topmost pad.

• Implemented in the RCanvas C++ class.

Drawable:

• Something which can be drawn on a pad.

• Implemented in the RDrawable C++ class.

• Each drawable entities has a GetDrawable method

Basic Concepts (1)

O.Couet - ROOT User’s Workshop 10 -13 September 2018 7

Canvas

Pad 1

- Drawable 1-1

- Drawable 1-2

- Drawable 1-3

- …

Pad 2

- Drawable 2-1

- Drawable 2-2

- Drawable 2-3

- …

C++ JavaScript

HTTP Server

Painting

Web Browser

Drawables’ painters are

implemented here.

Basic Concepts (2)

O.Couet - ROOT User’s Workshop 10 -13 September 2018 8

 Decouple data and graphics

Nor more: something->Draw(option)

Instead: pad->Draw(something, options ...)

Invokes: GetDrawable(something, options...)

options specify the drawing options (and attributes) to be use to render something.

Possibility to share attributes between Drawables.

GetDrawable()

O.Couet - ROOT User’s Workshop 10 -13 September 2018 9

Coordinates systems

1. Normalized Coordinates (% of canvas size).

2. Pixels Coordinates (on the client).

3. User Coordinates (ie: histogram range)

4. Normalized Device Coordinates (keep objects’ aspect ratio, internal use).

Px = 0.5_normal - 20_pixel + 3.14_user;

Using "user defined literal" one can specify coordinates like:

O.Couet - ROOT User’s Workshop 10 -13 September 2018 10

Code examples

The next slides show some working ROOT 7 code examples.

They illustrate :

• Some of the new graphics classes implemented.

• The graphics coordinates.

• The graphics attributes.

• The canvas and pad usage.

O.Couet - ROOT User’s Workshop 10 -13 September 2018 11

Code example: line.cxx

void line()

{

// Create a canvas to be displayed.

auto canvas = RCanvas::Create("Canvas Title");

for (double i = 0; i < 360; i+=1) {

double angle = i * TMath::Pi() / 180;

RPadPos p(0.3_normal*TMath::Cos(angle) + 0.5_normal,

0.3_normal*TMath::Sin(angle) + 0.5_normal);

auto opts = canvas->Draw(RLine({0.5_normal, 0.5_normal} , p));

RColor col(0.0025*i, 0, 0);

opts->SetLineColor(col);

opts->SetLineWidth(1);

}

canvas->Show();

}

O.Couet - ROOT User’s Workshop 10 -13 September 2018 12

Code example: text.cxx

void text()

{

// Create a canvas to be displayed.

auto canvas = RCanvas::Create("Canvas Title");

for (int i=0; i<=360; i+=10) {

auto opts = canvas->Draw(RText({0.5_normal, 0.6_normal}, "____ Hello World"));

RColor col(0.0015*i, 0.0025*i ,0.003*i);

opts->SetTextColor(col);

opts->SetTextSize(10+i/10);

opts->SetTextAngle(i);

}

canvas->Show();

}

O.Couet - ROOT User’s Workshop 10 -13 September 2018 13

Code example: draw_rh1.cxx

void draw_rh1() {

// Create the histogram.

RAxisConfig xaxis(10, 0., 10.);

auto pHist = std::make_shared<RH1D>(xaxis);

auto pHist2 = std::make_shared<RH1D>(xaxis);

. . .

// Create a canvas to be displayed.

auto canvas = RCanvas::Create("Canvas Title");

canvas->Draw(pHist)->SetLineColor(RColor::kRed);

canvas->Draw(pHist2)->SetLineColor(RColor::kBlue);

canvas->Show();

}

O.Couet - ROOT User’s Workshop 10 -13 September 2018 14

Code example: draw_subpads.cxx

void draw_subpads() {

// Create a canvas to be displayed.

auto canvas = RCanvas::Create("Canvas Title");

// Divide canvas on sub-pads

auto subpads = canvas->Divide(2,2);

subpads[0][0]->Draw(pHist1);

subpads[1][0]->Draw(pHist2);

subpads[0][1]->Draw(pHist3);

// Divide pad on sub-sub-pads

auto subsubpads = subpads[1][1]->Divide(2,2);

subsubpads[0][0]->Draw(pHist1)->SetLineColor(RColor::kBlue);

subsubpads[1][0]->Draw(pHist2)->SetLineColor(RColor::kGreen);

subsubpads[0][1]->Draw(pHist3)->SetLineColor(RColor::kRed);

canvas->Show();

}

O.Couet - ROOT User’s Workshop 10 -13 September 2018 15

Future work

• Complete the basic graphics «R» classes. For instance the text like TLatex (mathjax)

• Implement RPolyLine, RPolyMarker, RFillArea

• Implement higher level objects like RPie, RGaxis, RArrow, RBox, REllipse, RLegend, Feynman d

iagrams primitives etc …

• Data containers like RGraph, RMultiGraph

• Painters on the JavaScript side for all the high level objects.

• Generation of batch graphics images. See if there is a solution for TeX

• Testing

O.Couet - ROOT User’s Workshop 10 -13 September 2018 16

Conclusion

• Graphics based on web technologies (SVG, HTML, WebGL).

• Client (C++) / Server (JavaScript) model (HTTP server).

• Batch output do not rely on any native ROOT library (headless mode).

• New graphics concepts (canvas->Draw(something);).

• Basic graphics classes have been implemented (RCanvas, RPad, RDrawable).

