RForest: Evolution of ROOT TTree 1/0

Jakob Blomer, CERN
ROOT Users' Workshop 2018, Sarajevo

Motivation

File Format Exploration

I/O Subsystem Decomposition

Status and Outlook

jblomer@cern.ch

Evolution of TTree |/O

1/9

Motivation

S

[TTree's column-wise format is performance-engineered for our very problem!

e Only few other column-wise formats

e Apache Parquet (Google Dremel)
optimized for deep, sparse collections: our data is not
sparse

e Apache Arrow: transient, in-memory format

e Performance and file size compared to many other file
formats

e ROOT's unique feature: seamless C-++ integration
Users do not need to write or generate schema mapping

jblomer@cern.ch Evolution of TTree |/O

Serialization of Nested Collections

struct Track {
int fVertexld;

b

struct Particle {
float fPt;
std :: vector<Track> fTracks;

b

struct Event {
int fType;
std :: vector<Particle> fParticles;

}i

2/9

The TTree ﬁ

[TTree's column-wise format is performance-engineered for our very problem!]
e Only few other column-wise formats Serialization of Nested Collections
e Apache Parquet (Google Dremel) struct Track {

int fVertexld;

optimized for deep, sparse collections: our data is not .

sparse
struct Particle {
float fPt;

. . . std :: vector<Track> fTracks;
e Performance and file size compared to many other file B

formats

e Apache Arrow: transient, in-memory format

struct Event {

e ROOT’s unique feature: seamless C++ integration oG {Uspes
. . std :: vector<Particle> fParticles;
Users do not need to write or generate schema mapping b

[We want to ensure that ROOT 1/O continues to yield the most efficient analysis 1/0.]

jblomer@cern.ch Evolution of TTree |/O 2/9

RForest: Investigating the Future Path of TTree

1. Speed

e Improve mapping to vectorized and parallel hardware

e For types known at compile / JIT time: generate optimized code
e Optimized for simple types (float, int, and vectors of them)

e Optimized integration with RDataFrame

2. Robust interfaces

e Compile-time safety by default
e Decomposition into layers:

Logical layer, primitives layer, storage layer
e Separation of data model and live data

| Ansatz |

The RForest... classes provide a small subset of the TTree and are used for code experiments,
for instance with LHCb Run 1 OpenData examples and CMS NanoADOs. &ehis)

jblomer@cern.ch Evolution of TTree |/O 3/9

https://github.com/jblomer/root/tree/rforest

Interface Sketch

"particles", particleModel);

// With cling :
//auto event = eventModel—>Branch<Event >();

RColumnOptions opt;
RTree tree(eventModel,

for (/* events x/) {
for (/x paricles x/) {

*pt = ...,
partilces =>Fill ()
¥
tree. Fill ();

RColumnSink :: MakeSink (opt));

Writing Reading

auto eventModel = std:: make_unique<RTreeModel >(); RColumnOptions opt;

auto particleModel = std:: make_shared<RTreeModel >(); RTree tree(RColumnSource:: MakeSource(opt));
auto pt = particleModel —Branch<float >("pt"); auto view_particles =

auto particles = eventModel—>BranchCollection (tree. GetViewCollection ("particle");

auto view_pt =
for (auto e tree.GetEntryRange()) {
for (auto p view_particles.GetRange(e)) {
cout << view_pt(p) << endl;
}
}

view_particles.GetView<float >("pt"

)

RDataFrame

RColumnOptions opt;
opt.pathName = ""; // ...
auto rdf = ROOT:: MakeForestDataFrame(opt);

Not meant for release but for experimentation under real conditions.

jblomer@cern.ch

Evolution of TTree |/O

4/9

File Format Exploration

Breakdown of the Columnar Format

Dataset / File

—_—
Basket (Page)

struct Event {

I |

Cluster float px;
float py;
float pz;
};
Basket / Page Cluster
e Unit of writing e Block of (complete) events
e Unit of (de-)compression, except for zstd e Unit of parallelization (read and write)
e Unit of vectorization and bulk I/O e Unit of reading when small reads are expensive
e Unit of reading when small reads are cheap
[On object stores, we can map pages or clusters to objects (to be investigated) J

jblomer@cern.ch Evolution of TTree |/O 5/9

Format Changes in RForest Compared to TTree

1. Little-endian, which matches most Potential gains of the refined layout
contemporary architectures o Natural access to bulk /0

2. Separate baskets/pages with values from First experiments indicate an improvement of the
baskets/pages with indexes pages for (nested) order of factor 5 in de-serialization
collections e Reading can return a reference to the memory

struct Particle buffer, avoiding value copies

float fEnergy; // plot only fEnergy... First experiments indicate an improvement of the
float fCharge;

I

struct Jet {
std :: vector<Particle> fParticles;

order of factor 2 in de-serialization

e Branches of deeply nested collections benefit

} from columnar access
struct Event { .

std :: vector<Jet> flets; Significant speedup but for a small subset of
b analyses — no additional cost introduced

Note: the reading speed is affected by both
deserialization and decompression

jblomer@cern.ch Evolution of TTree |/O 6/9

Other Areas of Interest

e Memory management of 1/O buffers: can we stay within a fixed memory budget
e Asynchronous interfaces and scheduling of /O transfers

e Compression algorithms:
for instance, is it worthwhile applying different compression algorithms to different branches

e Clearer separation of |/O operations (transfer, decompression etc), reduction of their

synchronization points

jblomer@cern.ch Evolution of TTree |/O 7/9

I/O Subsystem Decomposition

1/O Subsystem Decomposition

e Allows for measuring

performance of
individual layers

Primitives layer
“Columns” containing elements of fundamental types (float, int, ...)
grouped into (compressed) pages

e Allows us to experiment
with different storage

Storage layer backends

e.g. TFile, raw file, object store o
e Primitives layer

decoupled from C++

Static e Separates the schema from type system
the data; e.g., signal tree allows for lightweight
RTreeModel RTree and background tree from 3rd party readers

RColumnModel RColumn same schema

jblomer@cern.ch Evolution of TTree |/O 8/9

Status and Outlook

Summary & Outlook

e “RForest” is exploring the evolution of the TTree I/O

e Aims at matching future analysis demands and storage systems

e Optimize for simple event models a la NanoAOD

e “RForest” provides a clean slate test environment for realistic experiments

e Allows for investigating different parts of the I/O individually
e Allows investigating several approach to select the ones that find the
way into ROOT

jblomer@cern.ch Evolution of TTree |/O 9/9

Backup Slides

File Format Checklist

Functional core requirements:

Clusterized, columnar physical layout
Support nested collections

Machine-independent (de-)serialization

Support for different compression algorithms

v

v

v

V' Recovery from canceled data set writes

v

v Tunable for different storage classes (SSD, HDD, Network)
v

Schema evolution

	Motivation
	File Format Exploration
	I/O Subsystem Decomposition
	Status and Outlook
	Appendix
	Backup Slides

