
ROOT usage by the art framework and its users

Kyle J. Knoepfel
ROOT Users’ Workshop in Sarajevo, Bosnia and Herzegovina
13 September 2018

• We support the offline (and some online) processing for 11 projects/experiments.
– Intended to be used for small-scale jobs and large-scale production campaigns.

• Hierarchical data-processing levels (𝑟𝑢𝑛 ⊃ 𝑠𝑢𝑏𝑟𝑢𝑛 ⊃ 𝑒𝑣𝑒𝑛𝑡)
– Support concurrent execution of events

• Experiments decide what the event represents.
– Some experiments make different choices for different stages of processing.

• Data-processing workflows are assembled by a configuration file
art -c config.fcl -s in.root -o out.root …

– All processing elements can be user/experiment-defined (most are).

• Experiment-specific workflows are executed via their configuration files, not via
different executables.

art framework

9/13/18 K. J. Knoepfel | ROOT Users' Workshop2

9/13/18 K. J. Knoepfel | ROOT Users' Workshop3

art provides the framework needs for ~2k physicists

artdaq
project

LArIAT
experiment

Previous and
potential users

9/13/18 K. J. Knoepfel | ROOT Users' Workshop4

artdaq
project

LArIAT
experiment

Previous and
potential users

art development guided by stakeholders, who meet weekly at a dedicated meeting:
• Discussion of upcoming changes and issues with stakeholders
• Sharing among experiments
• Same governance model from the beginning

art provides the framework needs for ~2k physicists

• Many art users are doing development for experiments that are not yet running:
– Reconstruction algorithms not yet finalized
– Workflows are under development

• They are involved in software development including event-generation, material
simulation, processing raw data, reconstruction, to analyzing quantities of physical
interesting.

• They are defining experiment-specific data models.

• They exercise aspects of ROOT that most end-users of frameworks would not:
– Exploring compression algorithms/levels, implementing I/O rules, etc.

• They are generally willing to (drastically) rethink any stage of the physics workflow:
– Event representation, exploring other I/O libraries, etc.

Distinctive aspects of the art user community

9/13/18 K. J. Knoepfel | ROOT Users' Workshop5

• Development is forward-looking. We aim to (e.g.):
– run art efficiently on HPC machines
– deliver cutting-edge software tools and incorporate best-of-class C++ libraries
– enable experiments to benefit from modern language features

• Experiment support
– We actively contribute to the code bases of art-using experiments/projects
– Design guidance and code reviews at the request of experiments
– Small-scale profiling efforts at the request of experiments

• User support
– Configuration description and validation suite
– We support open-source Clang builds on Linux and macOS
– Profiling tools, data-dependency graph generator, etc.

art’s efforts

9/13/18 K. J. Knoepfel | ROOT Users' Workshop6

• Current art developers have:
– Greatly benefited from “next-door” advice from one of the ROOT experts at Fermilab
– Contributed to the development of ROOT 6
– Participated in ROOT’s planning meetings

• Since the beginning (2009) art has used ROOT
– It’s what art users depend upon for I/O and analysis work
– It has provided type-introspection facilities that the framework has relied upon

art’s relationship with ROOT

9/13/18 K. J. Knoepfel | ROOT Users' Workshop7

• art’s I/O system is file-format-agnostic
– To choose a specific file format, specify the appropriate input source/output module, which

is loaded at run-time based on the configuration

• art provides its own input sources/output modules (e.g. RootInput/RootOutput),
but others are available:
– Many different kinds of experiment-defined input sources
– Really only one useful output module right now (RootOutput)

• All user-facing interactions with input/output files happen under the covers:

ROOT I/O in art and its experiments

9/13/18 K. J. Knoepfel | ROOT Users' Workshop8

void produce(Event& e) {
 auto const h = e.getValidHandle<std::vector<Hit>>(tag_); // May read from input source

auto const nHits = h->size();
 e.put(std::make_unique<std::size_t>(nHits)); // Will write to output file
}

• Allows user-created ROOT constructs to be organized into a ROOT file based on
the module in which they were created.

• The histograms are attached to a file, whose name is given at the command line:
art -c config.fcl -T myFile.root –o out.root

• This is how art modules should interact with ROOT. This allows art to:
– Open/close the ROOT file without user interaction
– Manage ROOT’s global state to avoid collisions with art/ROOT files

art’s TFileService

9/13/18 K. J. Knoepfel | ROOT Users' Workshop9

art::ServiceHandle<TFileService> tfs{};
auto h1f = tfs->make<TH1F>("h1f", "Histo 1", 100, 0., 200.);
auto tree = tfs->make<TTree>("tree", "My analysis tree");
auto g1 = tfs->makeAndRegister<TGraph>("graph", "A graph", 10);

• For TFileService and the RootOutput module, art is able to switch to new
ROOT files based on some condition being satisfied:

– Self-registering of ROOT objects makes this difficult to do seamlessly.

• We use SQLite databases for storing art metadata
– We have written a SQLite VFS that allows writing a database to a TKey in a TFile
– Metadata stored alongside event data, which are represented by TTrees

Further ROOT use

9/13/18 K. J. Knoepfel | ROOT Users' Workshop10

Number of processed events Number of processed input files

Number of processed subruns File size

Number of processed runs File age

• art provides (but does not require) a CMake-based build system, which includes
facilities for building dictionaries

• The user creates the requisite classes.h and classes_def.xml files, and art’s
build system creates the dictionary at build-time.

• art also verifies the consistency of checksums (thanks to CMS for the code)

Dictionary generation

9/13/18 K. J. Knoepfel | ROOT Users' Workshop11

my/dir/with/classes{.h,_def.xml}
include(ArtDictionary)
art_dictionary(my_lib1 my_lib2)

INFO: class 'critic::test::Data' has a different checksum for ClassVersion 10.
Incrementing ClassVersion to 11 and assigning it to checksum 914314239
WARNING: classes_def.xml files have been updated: rebuild dictionaries.

• art framework concepts are independent of an I/O mechanism
– Experiments may be ready for new framework features, independent of the ROOT version
– Experiments may be ready for different versions of ROOT at different times

art framework and art ROOT I/O

9/13/18 K. J. Knoepfel | ROOT Users' Workshop12

• art framework concepts are independent of an I/O mechanism
– Experiments may be ready for new framework features, independent of the ROOT version
– Experiments may be ready for different versions of ROOT at different times

• As of August 2018, ROOT support is introduced through a separate package:

• Now possible for experiments to setup art and ROOT independent of each other.
• New versions of ROOT do not necessitate new versions of art (and vice versa).

art framework and art ROOT I/O

9/13/18 K. J. Knoepfel | ROOT Users' Workshop13

NowThen

art framework art ROOT I/O

ROOT

art framework

ROOT

• Fewer side effects
– Remove as much global state as possible
– Ownership semantics are non-obvious (e.g. TH1::AddDirectory)

• Some cleanup
– As few global-namespace entities as possible.
– Fewer member functions; more free functions
– Remove utilities/types that are provided by the C++ standard
– Updated interface (e.g. can we get rid of ‘char const*’ function arguments?)

• Proposals for ROOT 7 fulfill many of these desires.
– We welcome those changes!

Desires for ROOT

9/13/18 K. J. Knoepfel | ROOT Users' Workshop14

• ROOT’s guarantees
– What are they?

• (e.g.) when can forward/backward compatibility be broken?
– Who informs what these guarantees should be and how?
– How often are they re-evaluated?

9/13/18 K. J. Knoepfel | ROOT Users' Workshop15

Documenting ROOT’s phase space

• ROOT’s guarantees
– What are they?

• (e.g.) when can forward/backward compatibility be broken?
– Who informs what these guarantees should be and how?
– How often are they re-evaluated?

• ROOT’s boundaries
– When does it make sense to use ROOT and when does it not?
– Tell us what these boundaries are—it builds confidence.
– These boundaries can change over time!

9/13/18 K. J. Knoepfel | ROOT Users' Workshop16

Documenting ROOT’s phase space

• ROOT’s guarantees
– What are they?

• (e.g.) when can forward/backward compatibility be broken?
– Who informs what these guarantees should be and how?
– How often are they re-evaluated?

• ROOT’s boundaries
– When does it make sense to use ROOT and when does it not?
– Tell us what these boundaries are—it builds confidence.
– These boundaries can change over time!

• Having these aspects clearly spelled out would help everyone!

9/13/18 K. J. Knoepfel | ROOT Users' Workshop17

Documenting ROOT’s phase space

Thank you.

