Asynchronous, parallel computations for complex simulation tasks in ROOT

Jochen Kerdels

University of Hagen - Chair of Human-Computer Interaction Prof. Dr. Gabriele Peters

> Jochen.Kerdels@FernUni-Hagen.de, http://mci.fernuni-hagen.de Universitätsstrasse 1, 58097 Hagen - Germany

ROOT Users' Workshop 2018

Introduction (1/2)

- Jochen Kerdels
 - Computer Scientist
 - Current position:

PostDoc working for Prof. Gabriele Peters Chair of Human-Computer Interaction University of Hagen

- Research Interests
 - Current focus: modeling of neural structures
 - Machine Learning ↔ Neuroscience
 - Robotics
 - Philosophy of Mind

Introduction (2/2)

Computational modeling of neural structures

- entorhinal grid cells
- cortical columns

Focus on understanding the computational principles

Figure from Moser et al. [2].

Figure from Harris and Mrsic-Flogel [1].

Simulation challenges

Large amounts of log & state data $\rightarrow ROOT$

Neural structures in the brain are highly parallel and recurrent.

Synchronized, global time in a simulation leads to a bottleneck at each time step \rightarrow Amdahl's law:

$$\lim_{r\to\infty} S(r) = \frac{1}{1-p},$$

with p the fraction of the program that can be parallized.

Amdahl's law

Figure by Daniels220 at English Wikipedia, CC BY-SA 3.0 .

Local Synchronization

Describing the simulation as **set of transforms** that communicate via **individual buffers**.

Properties

lock-free since a buffer is either read from or written to by only one transform at a time

self-timed, no global clock

the set of transforms and buffers can be modified during runtime

trade-offs:

- lock-freeness payed for by increased memory usage
- choice of transform granularity influences performance (caching!)
- lack of global time makes analysis more demanding

ROOT wish list

serialization of large memory structures (>2GB)

increased performance when storing many small objects (current workaround: A streamable version of TBufferFile)

Thank you for your attention.

References I

- Kenneth D. Harris and Thomas D. Mrsic-Flogel. Cortical connectivity and sensory coding. Nature, 503:51, November 2013.
- [2] Edvard I. Moser and May-Britt Moser.A metric for space.Hippocampus, 18(12):1142–1156, 2008.