GANDALPH @ CRIS

S. Rothe on behalf of
CRIS collaboration

ISCC 2018
The ionization potential of astatine

IP (At) = 9.31751(8) eV
The electron affinity of astatine

- No experimental value for EA(At) yet
- Scattering of all theoretical predictions and extrapolations ~1 eV
Successful stable iodine detachment in 2015

Laser photodetachment of radioactive 128I in 2016
The Method: Collinear laser photodetachment

negative ion beam

negative ions
neutral atoms

photo-electrons
secondary electrons

collimators
deflector

neutral atom detection (FC)

(anti) collinear tunable laser beam

coated glass plate electron multiplier

GANDALPHE

Gothenburg AN ion Detector for Affinity measurements by Laser PHotodetachment

Julia Sundberg
David Leimbach
Future of GANDALPH

- GANDALPH@GLM requires negative ions from ISOLDE target.
- Limits available beams mostly to halogens and chalcogens.
- Polonium unlikely to obtain from MK4
- Double charge exchange

\[X^+ \rightarrow X^+, X, X^- \]

(CRIS) Charge exchange cell

Proposal: Platform above CRIS

Disclaimer: Very preliminary drawing to highlight concept.
Motivation

• Create required space to integrate Gandalph and CRIS.
• Allow HV services and power to better organized and more accessible (improved safety)
• Address laser stability and safety considerations.
• Address current safety issues associated with ladder access to gangway above COLLAPS and CRIS.
• Increase experimental space in hall
Approach

• Design will require consultation with fixed experiments in the hall so that this doesn’t negatively effect their operation.
• Consideration for crane access, vibrational stability and impact.
• Design effort followed by cost estimation and funding requests.
• Installation during the second half of LS2