
Git CheatSheet
Create repository

Create an empty local repository
git init

Create a local copy from an existing repository
git clone https://gitlab.cern.ch/project/repo.git

Update
Get updates but don’t apply them
git fetch

Get updates and apply them
git pull

Commit
Add a file to the next commit (staging area)
git add path/to/file

commit the changes
git commit
Then, an editor should open and ask you to give a commit message

Add all modified files, commit them and give a commit message
git commit -am “my message”

Update last commit
git commit --amend

Note: new files must be added via the explicit git add command.

See the current state of the working dir and staging area
git status

Publish the code
Publish the code on the remote
git push

Help on commands
show help on the given command (what it does, available options…)
git command --help
Example:
git push –help

Manage branches
Create a local branch
git branch branch_name
Create a new local branch and checkout on it
git checkout -b branch_name

Checkout on branch master
git checkout master

Checkout on previous branch
git checkout -

Remove a local branch
git branch -D branch_name

Publish a branch on remote
git push -u origin branch_name

List local branches
git branch
List remote branches
git branch -r

History
Show differences between working dir and staging area
git diff [path/to/file]
Show differences between 2 commits
git diff 3036e6 79ea1a7e

Show the logs
git log
Show the logs for all branches, with a graph to see the branches
git log --all --graph

Search in sources
Grep in all files tracked by Git, from the current directory
Better to start it form the root of the repo
Options -in does a case insensitive search and gives the line number
git grep -in “search pattern”

List all files tracked by git
git ls-files

Find the location of a file, knowing its name partially
git ls-files | grep -i “partial name”

Play with commits
Copy a commit on top of our current branch
git cherry-pick 3036e6

Change the staging area with the given commit
git checkout 3036e6

Change the staging area with the previous commit
git checkout HEAD~1

Reset the current branch to a commit / branch
git reset 3036e6|branch_name

Reset the current branch to a commit / branch + reset the working dir
git reset --hard 3036e6|branch_name

Warning: with this last command, you lose all your changes!

Update a branch with master workflow
First we update our local master
git checkout master
git pull
Then we checkout on the branch we want to update
git checkout branch_name
git pull
We create a tmp branch as a save state of our current branch
git branch tmp
Now we start the rebase
git rebase master
If conflicts, you’ll have to solve them here, for each rebased commit
NEVER EVER pull HERE!!!
We push the result
git push --force-with-lease
git branch -D tmp

Rename and remove files
Rename: ensure that Git keeps the track of your file
git mv filename newfilename

Remove
git rm filename

Reset local repo to a known state
Soft reset: only changes the staging area and keep all your changes
in the working dir
No loss here
Replace <REFERENCE> with either a commit hash, a tag or a branch name
git reset <REFERENCE>

Hard reset: changes both staging area and working dir!
You may lose all your changes staged or unstaged!
Replace <REFERENCE> with either a commit hash, a tag or a branch name
git reset --hard <REFERENCE>

Note: reset is used to change the position of a branch pointer, but you need to be careful as you may
lose data.

	Create repository
	Update
	Commit
	Publish the code
	Help on commands
	Manage branches
	History
	Search in sources
	Play with commits
	Update a branch with master workflow
	Rename and remove files
	Reset local repo to a known state

