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Introduction to Git - Save your projects!
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Git – Distributed Version Control System

● Created by Linus Torvalds in 2005
– For Linux kernel

● Tool – to be integrated in your workflow

● Manage your project files
– Save them on a server (security)
– Keep a track of the modifications (history)

● Ease team working

What is it?
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Git – Distributed Version Control System

● Distributed: main difference with SVN
– No need for server

Distributed?

Remote

Local

WARNING: No data duplication !
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Git – Distributed Version Control System

● Distributed: main difference with SVN
– SVN style – mono user

Distributed?

Remote

Local
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Git – Distributed Version Control System

● Distributed: main difference with SVN
– SVN style – multi user

Distributed?

Remote

Local
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Git – Distributed Version Control System

● Distributed: main difference with SVN
– Distributed: peer to peer

Distributed?

Remote

Local
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Git – Distributed Version Control System

● Distributed: main difference with SVN
– Distributed: multi remote

Distributed?

Remote

Local
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Git – Distributed Version Control System

● Distributed: main difference with SVN
– Distributed: Usual Open Source workflow

Distributed?

Remote

Local
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Git – Concepts

● What is a commit?
– Contains the state of all the files at one moment
– Contains a message explaining the reasons of the changes
– Contains the the whole history that leads to it

● Commits are organized in a graph
– 1 or more parents (history)
– 1 or more children (future)

● Commits have name
– A hash: 76e22ab887fe24de6a7b3d19809af392de3036e6

● Will be simplified in this presentation

Commits
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Git – Concepts
Graph
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Git – Concepts

● How to organize the commits?
– Use references:

● Tag → direct pointer to a commit (label)
● Branch → dynamic pointer

– Points to one commit
– Moves to the most recent commit dynamically
– Default branch = master

● HEAD → current position in the tree

References
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Git – Concepts

● How to move in the graph?
– Git checkout:

● to commit name (ad65ert5gd12)
● to relative position (HEAD~2)
● to tag
● to branch

References
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Git – Setup your environment

● Windows
– Install Git for Windows

● https://git-scm.com/downloads
● Do not use the CMF version: not up to date

– Min version to install: 2.16
– Some UI exists (Tortoise Git, Github Desktop)

● CLI is easy to learn
– See the CheatSheet → 5 commands for basics

● CLI is way more powerful
● You will need CLI at one point anyway

● Linux: yum install git

Install Git

https://git-scm.com/downloads
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Git – Setup your environment

● Tell git who you are
– git config --global user.name "Rémi Ducceschi"

– git config --global user.email "remi.ducceschi@cern.ch"

● Change default editor (nano)
– git config --global core.editor "C:/Program\ Files/Notepad+

+/notepad++.exe -multiInst -notabbar -nosession -noPlugin"

● Colors (on by default)
– git config --global color.ui true

● Stored in ~/.gitconfig
– Can be overwritten in project by adding a .gitconfig

Basics

mailto:remi.ducceschi@cern.ch
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Git[lab] – Workflow

● Create a branch
– One branch per feature

● Edit files
● Commit your changes

– Do it several times
● To save your work (end of the day, lunch time…)
● To separate minor states of development

● Push to remote
● Create a Pull Request (PR) / Merge Request

From editing, publishing to integrating the code
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Git[lab] – Workflow

● Create a branch
– One branch per feature

● Edit files
● Commit your changes

– Do it several times
● To save your work (end of the day, lunch time…)
● To separate minor states of development

● Push to remote
● Create a Pull Request (PR) / Merge Request

From editing, publishing to integrating the code
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Git[lab] – Workflow

● Checkout on master and update it
– git checkout master

– git pull

● Create your branch and checkout on it
– git checkout -b my_branch

● You can push your branch now
– Even without any modifications
– git push --set-upstream origin my_branch

Create a branch
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Git[lab] – Workflow

● Create a branch
– One branch per feature

● Edit files
● Commit your changes

– Do it several times
● To save your work (end of the day, lunch time…)
● To separate minor states of development

● Push to remote
● Create a Pull Request (PR) / Merge Request

From editing, publishing to integrating the code
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Git[lab] – Workflow
How to commit

File edition Commit edition Publication

● A bit of theory:
– 3 states
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Git[lab] – Workflow

● Edit files
– git status to see changes

● Add the changes
– git add file1 file2…

● Commit
– git commit

How to commit
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Git[lab] – Workflow

● Create a branch
– One branch per feature

● Edit files
● Commit your changes

– Do it several times
● To save your work (end of the day, lunch time…)
● To separate minor states of development

● Push to remote
● Create a Pull Request (PR) / Merge Request

From editing, publishing to integrating the code
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Git[lab] – Workflow

● First we update the branch
– git pull

● Then we push
– git push

– git push --set-upstream origin my_branch

● Needed if the branch has never been pushed

How to publish
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Git[lab] – Workflow

● Create a branch
– One branch per feature

● Edit files
● Commit your changes

– Do it several times
● To save your work (end of the day, lunch time…)
● To separate minor states of development

● Push to remote
● Create a Pull Request (PR) / Merge Request

From editing, publishing to integrating the code
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Git[lab] – Workflow
How to Pull request (PR)
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Git[lab] – Workflow
How to Pull request (PR)
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Git[lab] – Workflow
How to Pull request (PR)
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Git[lab] – Workflow
How to Pull request (PR)

● With good repository setup
– Click merge when ready!
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Git - Conclusion

● I didn’t talked about merge
– You shouldn’t merge by hand!

● Only merge via Pull Requests
● Except rare occasion

– Rebase only!
● Advanced git possibilities

– Rewrite history
– Reflogs
– …
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Git – External links
Very useful!

● Learn git from basics to expert
– https://learngitbranching.js.org/

● Customize your environment with aliases
– https://git-scm.com/book/tr/v2/Git-Basics-Git-Aliases

https://learngitbranching.js.org/
https://git-scm.com/book/tr/v2/Git-Basics-Git-Aliases
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Questions
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