
EN-ACE-SU

SU Development Forum

Auteur: Rémi Ducceschi
Supervisor: Francis Klumb

2018-01-26

Introduction to Git - Save your projects!



2EN-ACE-SU

Git – Distributed Version Control System

● Created by Linus Torvalds in 2005
– For Linux kernel

● Tool – to be integrated in your workflow

● Manage your project files
– Save them on a server (security)
– Keep a track of the modifications (history)

● Ease team working

What is it?



3EN-ACE-SU

Git – Distributed Version Control System

● Distributed: main difference with SVN
– No need for server

Distributed?

Remote

Local

WARNING: No data duplication !



4EN-ACE-SU

Git – Distributed Version Control System

● Distributed: main difference with SVN
– SVN style – mono user

Distributed?

Remote

Local



5EN-ACE-SU

Git – Distributed Version Control System

● Distributed: main difference with SVN
– SVN style – multi user

Distributed?

Remote

Local



6EN-ACE-SU

Git – Distributed Version Control System

● Distributed: main difference with SVN
– Distributed: peer to peer

Distributed?

Remote

Local



7EN-ACE-SU

Git – Distributed Version Control System

● Distributed: main difference with SVN
– Distributed: multi remote

Distributed?

Remote

Local



8EN-ACE-SU

Git – Distributed Version Control System

● Distributed: main difference with SVN
– Distributed: Usual Open Source workflow

Distributed?

Remote

Local



9EN-ACE-SU

Git – Concepts

● What is a commit?
– Contains the state of all the files at one moment
– Contains a message explaining the reasons of the changes
– Contains the the whole history that leads to it

● Commits are organized in a graph
– 1 or more parents (history)
– 1 or more children (future)

● Commits have name
– A hash: 76e22ab887fe24de6a7b3d19809af392de3036e6

● Will be simplified in this presentation

Commits



10EN-ACE-SU

Git – Concepts
Graph



11EN-ACE-SU

Git – Concepts

● How to organize the commits?
– Use references:

● Tag → direct pointer to a commit (label)
● Branch → dynamic pointer

– Points to one commit
– Moves to the most recent commit dynamically
– Default branch = master

● HEAD → current position in the tree

References



12EN-ACE-SU

Git – Concepts

● How to move in the graph?
– Git checkout:

● to commit name (ad65ert5gd12)
● to relative position (HEAD~2)
● to tag
● to branch

References



13EN-ACE-SU

Git – Setup your environment

● Windows
– Install Git for Windows

● https://git-scm.com/downloads
● Do not use the CMF version: not up to date

– Min version to install: 2.16
– Some UI exists (Tortoise Git, Github Desktop)

● CLI is easy to learn
– See the CheatSheet → 5 commands for basics

● CLI is way more powerful
● You will need CLI at one point anyway

● Linux: yum install git

Install Git

https://git-scm.com/downloads


14EN-ACE-SU

Git – Setup your environment

● Tell git who you are
– git config --global user.name "Rémi Ducceschi"

– git config --global user.email "remi.ducceschi@cern.ch"

● Change default editor (nano)
– git config --global core.editor "C:/Program\ Files/Notepad+

+/notepad++.exe -multiInst -notabbar -nosession -noPlugin"

● Colors (on by default)
– git config --global color.ui true

● Stored in ~/.gitconfig
– Can be overwritten in project by adding a .gitconfig

Basics

mailto:remi.ducceschi@cern.ch


15EN-ACE-SU

Git[lab] – Workflow

● Create a branch
– One branch per feature

● Edit files
● Commit your changes

– Do it several times
● To save your work (end of the day, lunch time…)
● To separate minor states of development

● Push to remote
● Create a Pull Request (PR) / Merge Request

From editing, publishing to integrating the code



16EN-ACE-SU

Git[lab] – Workflow

● Create a branch
– One branch per feature

● Edit files
● Commit your changes

– Do it several times
● To save your work (end of the day, lunch time…)
● To separate minor states of development

● Push to remote
● Create a Pull Request (PR) / Merge Request

From editing, publishing to integrating the code



17EN-ACE-SU

Git[lab] – Workflow

● Checkout on master and update it
– git checkout master

– git pull

● Create your branch and checkout on it
– git checkout -b my_branch

● You can push your branch now
– Even without any modifications
– git push --set-upstream origin my_branch

Create a branch



18EN-ACE-SU

Git[lab] – Workflow

● Create a branch
– One branch per feature

● Edit files
● Commit your changes

– Do it several times
● To save your work (end of the day, lunch time…)
● To separate minor states of development

● Push to remote
● Create a Pull Request (PR) / Merge Request

From editing, publishing to integrating the code



19EN-ACE-SU

Git[lab] – Workflow
How to commit

File edition Commit edition Publication

● A bit of theory:
– 3 states



20EN-ACE-SU

Git[lab] – Workflow

● Edit files
– git status to see changes

● Add the changes
– git add file1 file2…

● Commit
– git commit

How to commit



21EN-ACE-SU

Git[lab] – Workflow

● Create a branch
– One branch per feature

● Edit files
● Commit your changes

– Do it several times
● To save your work (end of the day, lunch time…)
● To separate minor states of development

● Push to remote
● Create a Pull Request (PR) / Merge Request

From editing, publishing to integrating the code



22EN-ACE-SU

Git[lab] – Workflow

● First we update the branch
– git pull

● Then we push
– git push

– git push --set-upstream origin my_branch

● Needed if the branch has never been pushed

How to publish



23EN-ACE-SU

Git[lab] – Workflow

● Create a branch
– One branch per feature

● Edit files
● Commit your changes

– Do it several times
● To save your work (end of the day, lunch time…)
● To separate minor states of development

● Push to remote
● Create a Pull Request (PR) / Merge Request

From editing, publishing to integrating the code



24EN-ACE-SU

Git[lab] – Workflow
How to Pull request (PR)



25EN-ACE-SU

Git[lab] – Workflow
How to Pull request (PR)



26EN-ACE-SU

Git[lab] – Workflow
How to Pull request (PR)



27EN-ACE-SU

Git[lab] – Workflow
How to Pull request (PR)

● With good repository setup
– Click merge when ready!



28EN-ACE-SU

Git - Conclusion

● I didn’t talked about merge
– You shouldn’t merge by hand!

● Only merge via Pull Requests
● Except rare occasion

– Rebase only!
● Advanced git possibilities

– Rewrite history
– Reflogs
– …



29EN-ACE-SU

Git – External links
Very useful!

● Learn git from basics to expert
– https://learngitbranching.js.org/

● Customize your environment with aliases
– https://git-scm.com/book/tr/v2/Git-Basics-Git-Aliases

https://learngitbranching.js.org/
https://git-scm.com/book/tr/v2/Git-Basics-Git-Aliases


30EN-ACE-SU

Questions


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

