

Measurement of the production cross-section of a single top quark in association with a Z boson at 13 TeV with ATLAS

Lidia Dell'Asta (Boston University)

Outline

- **▶** Introduction
 - The top quark
 - Single top quark production at the LHC
 - Single top quark production in association with a Z boson
- ▶ The ATLAS Experiment
- Standard Model tZq production
 - Event selection
 - Background estimation
 - Multivariate analysis
 - Results
- ▶ ATLAS & CMS comparison
- Conclusions and outlook

Outline

- **▶** Introduction
 - The top quark
 - Single top quark production at the LHC
 - Single top quark production in association with a Z boson
- ▶ The ATLAS Experiment
- Standard Model tZq production
 - Event selection
 - Background estimation
 - Multivariate analysis
 - Results
- ▶ ATLAS & CMS comparison
- Conclusions and outlook

The top quark

- Discovered at Tevatron by the D0 and CDF experiments in 1995.
 - Since then, extensively studied both at Tevatron and at the LHC.

- Experimentally confirmed facts:
 - top is the heaviest known fundamental particle
 - m(t) ~ I73 GeV
 - it is a quark (sees the strong force)
 - charge 2/3e
 - ▶ spin I/2
 - decays almost exclusively to Wb
 - produced by strong and weak interactions.
- Why studying the top quark?
 - Only place to study the properties of a bare quark.
 - ▶ Special role in EWSB?
 - First place a new particle could be observed (e.g. if new particle couples to mass).
 - Top is a background to many other searches.

The top quark

- Discovered at Tevatron by the D0 and CDF experiments in 1995.
 - Since then, extensively studied both at Tevatron and at the LHC.

- Experimentally confirmed facts:
 - top is the heaviest known fundamental particle
 - m(t) ~ I73 GeV
 - it is a quark (sees the strong force)
 - charge 2/3e
 - ▶ spin I/2
 - decays almost exclusively to Wb
 - produced by strong and weak interactions.

How is the top quark produced at the LHC?

- Why studying the top quark?
 - Only place to study the properties of a bare quark.
 - ▶ Special role in EWSB?
 - First place a new particle could be observed (e.g. if new particle couples to mass).
 - Top is a background to many other searches.

Single top quark production @LHC

t-channel

$$\sigma(7 \text{ TeV}) = 63.9^{+2.9}_{-2.5} \ pb$$

$$\sigma(8 \text{ TeV}) = 84.7^{+3.8}_{-3.2} \ pb$$

$$\sigma(13 \text{ TeV}) = 217.0^{+9.0}_{-7.7} \ pb$$

tW channel

$$\sigma(7 \text{ TeV}) = 15.7 \pm 1.2 \ pb$$

 $\sigma(8 \text{ TeV}) = 22.4 \pm 1.5 \ pb$

$$\sigma(13 \text{ TeV}) = 71.7 \pm 3.8 \ pb$$

s-channel

$$\sigma(7 \text{ TeV}) = 4.3 \pm 0.2 \ pb$$

$$\sigma(8 \text{ TeV}) = 5.2 \pm 0.2 \ pb$$

$$\sigma(13 \text{ TeV}) = 10.3 \pm 0.4 \ pb$$

NLO x-sec. from LHC Top WG

Single top quark production @LHC

- Important test of the Standard Model.
 - \triangleright Measurement of V_{tb} of CKM matrix.
 - Indirect measurement of the top-quark mass.
- Improve knowledge of PDFs.
 - ▶ Cross-section ratio $R_t = \sigma(t)/\sigma(\overline{t})$: sensitive to u/d-quark ratio in PDF sets.
 - Test of b-quark PDF.
- ▶ Precise measurement input to Monte Carlo tuning, using unfolded distributions.
- Looking for new physics.
 - ▶ Modification of $\sigma(t)$ shape or in a variation of coupling w.r.t. SM expectations.

LHC Run2 data

- Fantastic LHC performance.
 - High integrated luminosity collected by the experiments.
- ▶ LHC is a top factory.
 - Allows for precision measurements in the top sector.
- Makes it possible to look for rare processes, e.g. single top production in association with a Z boson (tZq).
- Search performed on 2015+2016 data from LHC pp collisions at 13 TeV.

	I3 TeV
2015	3.3 fb ⁻¹
2016	32.8 fb ⁻¹
	36.1 fb ⁻¹

How many single top events were produced in this dataset?

	x-sec (pb)	#events*	
t-channel	217	8 M	
tW	71.1	2.5 M	
s-channel	10.3	300 K	
tZq	0.8	30 K	

^{*}These do not include branching ratios.

Single top quark production @LHC

	7 TeV	8 TeV	I3 TeV*
t-channel	$\frac{PRD \ 90 \ (2014) \ 112006}{cross \ sect. \ (with \ differential)} \\ + R_t + V_{tb}$	EPJC 77 (2017) 531 cross sect. (with diff+fiducial) + R _t + V _{tb}	JHEP 04 (2017) 086 cross-section + R _t + V _{tb}
tW	PLB 716 (2012) 142 cross section + V _{tb}	JHEP 01 (2016) 064 cross sect. (with fiducial) + V _{tb}	arXiv:1612.07231 + paper in preparation cross sect. (with differential)
s-channel	ATLAS-CONF-2011-118 95% CL upper limit on cross section	PLB 756 (2016) 228 cross section 3.2σ observed	

*With partial datasets.

Lidia Dell'Asta \sqrt{s} [TeV] 17.11.2017

Single top in association with a Z boson

- ▶ Standard Model single-top production in association with a Z boson (t-channel) not measured before Run2.
 - CMS search on 8 TeV data [JHEP 07 (2017) 003].
 - ▶ Observed (expected) significance 2.4σ (1.8σ).
- ▶ SM tZq probes both tZ and WWZ couplings.
 - ▶ tTZ only probes tZ previously measured by ATLAS and CMS.
- ▶ SM tZq background for:
 - ▶ FCNC tZ production,
 - ▶ tH final state.

from <u>10.1103/PhysRevD.87.114006</u>

$$\sigma_{NLO}(tZq) = 800 \text{ fb}$$

What are we looking for?

- ▶ Four different final states available, depending on:
 - decay of the W boson from the top
 - decay of the Z boson.

Fully hadronic channel

- both W and Z decay hadronically
- \triangleright ≥ 6 jets

▶ Single lepton channel

- W decays leptonically, Z decays hadronically
- I lepton, ≥ 4 jets

Dilepton channel

- W decays hadronically, Z decays leptonically
- ≥ 2 leptons, ≥ 4 jets
- ▶ Z to charged leptons(~5.3%) promising but large Z+jets background
- ▶ Z to neutrinos(~5.2%) interesting for mono top searches

▶ Trilepton channel - BR ~2.2%

- ▶ both W and Z decay leptonically
- \triangleright 3 leptons, ≥ 2 jets
- relatively low background

What are we looking for?

- Four different final states available, depending on:
 - decay of the W boson from the top
 - decay of the Z boson.

Fully hadronic channel

- both W and Z decay hadronically
- \triangleright ≥ 6 jets

Single lepton channel

- W decays leptonically, Z decays hadronically
- I lepton, ≥ 4 jets

Dilepton channel

- W decays hadronically, Z decays leptonically
- ≥ 2 leptons, ≥ 4 jets
- ▶ Z to charged leptons(~5.3%) promising but large Z+jets background
- ▶ Z to neutrinos(~5.2%) interesting for mono top searches

▶ Trilepton channel - BR ~2.2%

- both W and Z decay leptonically
- \triangleright 3 leptons, ≥ 2 jets
- relatively low background

What are we looking for?

- ▶ Four different final states available, depending on:
 - decay of the W boson from the top
 - decay of the Z boson.

Fully hadronic channel

- both W and Z decay hadronically
- $\triangleright \ge 6$ jets

Single lepton channel

- W decays leptonically, Z decays hadronically
- I lepton, ≥ 4 jets

Dilepton channel

- W decays hadronically, Z decays leptonically
- ≥ 2 leptons, ≥ 4 jets
- ▶ Z to charged leptons(~5.3%) promising but large Z+jets background
- ▶ Z to neutrinos(~5.2%) interesting for mono top searches

- ▶ both W and Z decay leptonically
- \triangleright 3 leptons, ≥ 2 jets
- relatively low background

How do we reconstruct these objects?

Outline

- **▶** Introduction
 - ▶ The top quark
 - Single top quark production at the LHC
 - Single top quark production in association with a Z boson
- ▶ The ATLAS Experiment
- Standard Model tZq production
 - Event selection
 - Background estimation
 - Multivariate analysis
 - Results
- ▶ ATLAS & CMS comparison
- Conclusions and outlook

The ATLAS detector

- ▶ Key detector upgrades for Run2:
 - ▶ trigger: L1 rates increased from 75 to 100 kHz, and High Level Trigger rates from 400 to 1000 Hz.
 - pixel detector: from a 3- to a 4-layer detector, with the addition of the Insertable B-Layer and a new beam pipe.

Particle identification

Performance

14

b-jet efficiency 17.11.2017

Outline

- ▶ Introduction
 - ▶ The top quark
 - Single top quark production at the LHC
 - Single top quark production in association with a Z boson
- ▶ The ATLAS Experiment
- Standard Model tZq production
 - Event selection
 - Background estimation
 - Multivariate analysis
 - Results
- ▶ ATLAS & CMS comparison
- Conclusions and outlook

Event selection

Leptons

- ▶ exactly 3
- $\triangleright |\eta|$ < 2.5
- $P_{T}(I_{1}) > 28 \text{ GeV}$
- $P_T(I_2) > 25 \text{ GeV}$
- $P_T(I_2) > 15 \text{ GeV}$

▶ Jets

- ▶ exactly 2
- $\triangleright |\eta|$ < 4.5
- **▶** I b-tagged ($|\eta|$ < 2.5)
- $\triangleright p_T(jets) > 30 \text{ GeV}$

▶ In addition:

- $\triangleright \ge 1$ opposite-sign same-flavour lepton pair with $|m_{\parallel} m_{Z}| < 10$ GeV,
- \triangleright m_T(I_{W} , ν) > 20 GeV.

Standard Model Production Cross Section Measurements

Signal, validation and control regions

Common selections				
Exactly 3 leptons with $ \eta < 2.5$ and $p_{\rm T} > 15~{\rm GeV}$ $p_{\rm T}(\ell_1) > 28~{\rm GeV}, p_{\rm T}(\ell_2) > 25~{\rm GeV}, p_{\rm T}(\ell_3) > 15~{\rm GeV}$ $p_{\rm T}({\rm jet}) > 30~{\rm GeV}$ $m_{\rm T}(\ell_W, \nu) > 20~{\rm GeV}$				
SR	Diboson VR / CR	$t\overline{t}$ VR	$t\overline{t}$ CR	
	≥ 1 OSSF pair $ m_{\ell\ell} - m_Z < 10 \text{ GeV}$	$\geq 1 \text{ OSSF pair} \\ m_{\ell\ell} - m_Z > 10 \text{ GeV}$	≥ 1 OSDF pair No OSSF pair	
2 jets, $ \eta < 4.5$ 1 b-jet, $ \eta < 2.5$	1 jet, $ \eta < 4.5$	2 jets, $ \eta < 4.5$	2 jets, $ \eta < 4.5$	
-1 0-jet, $ \eta < 2.5$	VR/CR: $m_{\rm T}(\ell_W, \nu) > 20/60 \; {\rm GeV}$	1 b-jet, $ \eta < 2.5$	1 b-jet, $ \eta < 2.5$	

- ▶ Control regions (CRs) to normalize background sources to data.
- ▶ Validation regions (VRs) to validate background modeling.

Background estimation - Dibosons

- ▶ Diboson (+ jets) events
 - mostly coming from WZ,
 - ZZ (where 4th lepton missed) contributing to 9% of total diboson.
- Estimated from MC
 - ▶ Sherpa (2.1.1).
- Normalisation corrected using scale factor derived in diboson VR $(m_T(W) > 60 \text{ GeV}, \text{ to reduce } Z+\text{jets contamination}).$
 - Kinematic distribution shapes well described.
 - Uncertainty on scale factor from:
 - variation of the requirement on m_T(W),
 - difference in SR between Sherpa and Powheg normalisations.

$$SF_{diboson} = 1.47 \pm 0.44$$

Background estimation - Z+jets fakes

- ▶ Using fake-factor method.
- Estimation done separately for electron and muon channels (as number of non-prompt or fake electrons and muons can be very different).
- ▶ Region defined by selecting events with $m_T(W) < 20$ GeV.
- ▶ Fake factors calculated as the ratio of data events that have three isolated leptons to events in which one of the leptons fails the isolation requirement.
 - ▶ Derived in bins of the $p_T(l_W)$ of the lepton not associated to the Z boson.
- ▶ Factors are then applied to events passing SR selection (including a $m_T(W) > 20$ GeV cut) that have one of the three leptons failing the isolation requirement.
- ▶ Contamination from other background sources taken into account and subtracted.
- ▶ Uncertainty: 40%.

3 real leptons (all tight)

2 tight + 1 loose

$$F = \frac{N_{\text{tight}}^{\text{FF}}}{N_{\text{loose}}^{\text{FF}}}$$

$$F \times N_{\text{loose}}^{\text{CR}} = N^{\text{SR}}$$

Background estimation - Others

bttV + ttH

- Estimated from MC
 - ▶ MadGraph5_aMC@NLO (2.2.3) + Pythia8.
- Normalised to NLO theoretical cross section.
- ▶ 10% of total background.

▶tWZ

- Estimated from MC
 - MadGraph5_aMC@NLO (2.2.3) + Pythia8.
- Normalised to NLO theoretical cross section.
- Contributes with 4 events.

▶tW

- Estimated from MC
 - Powheg + Pythia6.
- ▶ Normalisation corrected with data-driven scale factor (same as $t\bar{t}$).
- Less than I event in SR.

Signal region

	N. 1 C + 4
Channel	Number of events *
tZq	35 ± 9
$\frac{t\overline{t} + tW}{Z + icts}$	18 ± 7 37 ± 11
Z + jets Diboson	57 ± 11 53 ± 13
$t\overline{t}V + t\overline{t}H + t$	
Total	163 ± 12
	103 ± 12

- ▶ tZq 3-lepton
 - ▶ BR = 2.2%
 - ▶ Selection eff = 5%

Multivariate analysis

- ▶ Need better separation between signal and background.
 - Use multivariate analysis.
- ▶ NeuroBayes package used for training a neural network.
- ▶ Signal trained against all backgrounds (except tt because of low statistics).
- ▶ 10 variables kept for training.
- Several checks performed to make sure the procedure is sound.
- Checking:
 - NN stability
 - input variables and NN output in VRs
 - ▶ input variables and NN output in SR with O_{NN} < 0.5
 - ▶ (after unblinding) input variables and NN output in SR with $O_{NN} > 0.5$
 - (after unblinding) input variables and NN output in SR.

Variable	Definition	b
$ \eta(\mathrm{j}) $	Absolute value of untagged jet η	
$p_{\mathrm{T}}(\mathrm{j})$	Untagged jet $p_{\rm T}$	b
m_t	Reconstructed top-quark mass	
$p_{\mathrm{T}}(\ell^{W})$	p_{T} of the lepton from the W-boson decay	
$\Delta R(\mathrm{j},Z)$	ΔR between the untagged jet and the Z boson	
$m_{\mathrm{T}}(\ell, E_{\mathrm{T}}^{\mathrm{miss}})$	Transverse mass of W boson	
$p_{\mathrm{T}}(t)$	Reconstructed top-quark $p_{\rm T}$	
$p_{ m T}(b)$	Tagged jet $p_{\rm T}$	
$p_{\mathrm{T}}(Z)$	$p_{\rm T}$ of the reconstructed Z boson	
$ \eta(\ell^{W}) $	Absolute value of η of the lepton coming from the	W-boson decay

Variable	Definition
$ \eta(j) $	Absolute value of untagged jet η
$p_{\mathrm{T}}(\mathrm{j})$	Untagged jet p_{T}
m_t	Reconstructed top-quark mass
$p_{\mathrm{T}}(\ell^{W})$	p_{T} of the lepton from the W-boson decay
$\Delta R(\mathrm{j},Z)$	ΔR between the untagged jet and the Z boson
$m_{\mathrm{T}}(\ell, E_{\mathrm{T}}^{\mathrm{miss}})$	Transverse mass of W boson
$p_{\mathrm{T}}(t)$	Reconstructed top-quark $p_{\rm T}$
$p_{ m T}(b)$	Tagged jet $p_{\rm T}$
$p_{\mathrm{T}}(Z)$	$p_{\rm T}$ of the reconstructed Z boson
$ \eta(\ell^{W}) $	Absolute value of η of the lepton coming from the W-boson decay

Variable	Definition	h
$-{ \eta(j) }$	Absolute value of untagged jet η	• 0000000000
$p_{\mathrm{T}}(\mathrm{j})$	Untagged jet $p_{\rm T}$	$ar{b}$
m_t	Reconstructed top-quark mass	
$p_{\mathrm{T}}(\ell^{W})$	$p_{\rm T}$ of the lepton from the W-boson decay	
$\Delta R(\mathrm{j},Z)$	ΔR between the untagged jet and the Z boson	
$m_{\mathrm{T}}(\ell, E_{\mathrm{T}}^{\mathrm{miss}})$	Transverse mass of W boson	
$p_{\mathrm{T}}(t)$	Reconstructed top-quark $p_{\rm T}$	
$p_{\mathrm{T}}(b)$	Tagged jet $p_{\rm T}$	
$p_{\mathrm{T}}(Z)$	$p_{\rm T}$ of the reconstructed Z boson	
$ \eta(\ell^W) $	Absolute value of η of the lepton coming from the	W-boson decay

Variable	Definition	
$\overline{ \eta(j) }$	Absolute value of untagged jet η	
$p_{\mathrm{T}}(\mathrm{j})$	Untagged jet p_{T}	$-\bar{b}$
m_t	Reconstructed top-quark mass	
$p_{\mathrm{T}}(\ell^{W})$	p_{T} of the lepton from the W-boson decay	
$\Delta R(\mathrm{j},Z)$	ΔR between the untagged jet and the Z boson	
$m_{\mathrm{T}}(\ell, E_{\mathrm{T}}^{\mathrm{miss}})$	Transverse mass of W boson	
$p_{\mathrm{T}}(t)$	Reconstructed top-quark p_{T}	
$p_{\mathrm{T}}(b)$	Tagged jet $p_{\rm T}$	
$p_{\mathrm{T}}(Z)$	$p_{\rm T}$ of the reconstructed Z boson	
$ \eta(\ell^{W}) $	Absolute value of η of the lepton coming from the W-boson decay	У

NN input variables - Diboson VR

NN input variables - ttVR

NN output in VRs

▶ Very nice confirmation of good modeling of backgrounds, including scale factors, NN input variables, NN output distribution.

Systematic uncertainties

- Object reconstruction and calibration uncertainties
- Signal PDF and radiation
- Background normalizations.
- Luminosity
- 3.2 % for 2015 and 2016 datasets.

Lidia Dell'Asta 32 17.11.2017

Results

- ightharpoonup Maximum-likelihood fit performed O_{NN} .
- Extract μ, ratio of the measured signal yield to the NLO SM expectation:

$$0.75 \pm 0.28$$
 (stat. + syst.) ± 0.07 (th.)

Dbserved (expected) significance of extracted signal:

$$4.2\sigma$$
 (5.4 σ)

 \triangleright From μ , obtain cross-section:

$$600 \pm 170 \text{ (stat.)} \pm 140 \text{ (syst.)} \text{ fb}$$

▶ to be compared to the NLO prediction of 800 fb.

Clear evidence of single top production in association with a Z boson in the t-channel.

 $O_{NN} = 0.93$

Run Number: 281385, Event Number: 1292162133

Date: 2015-10-10 20:46:27 CEST

$$p_T(jet) = 107 \text{ GeV}$$

 $\eta(jet) = 1.93$

 $O_{NN} = 0.94$

Run Number: 303304, Event Number: 4100335171

Date: 2016-07-05 17:00:07 CEST

Outline

- **▶** Introduction
 - ▶ The top quark
 - Single top quark production at the LHC
 - Single top quark production in association with a Z boson
- ▶ The ATLAS Experiment
- Standard Model tZq production
 - Event selection
 - Background estimation
 - Multivariate analysis
 - Results
- ▶ ATLAS & CMS comparison
- Conclusions and outlook

ATLAS & CMS

```
□TOPQ-2016-14
                                  ATLAS
  (submitted to PLB)
□36.1 fb
☐ Significance obs(exp):
 4.2 (5.4)\sigma
\Box \mu = 0.75
      ± 0.21 (stat.)
      \pm 0.17 (syst.)
      ± 0.05 (th.)
\Box \sigma(tZq) = 600
              ± 170 (stat.)
              ± 140 (syst.) fb
```

```
CMS-PAS-TOP-16-020
                                     CMS
■35.9 fb<sup>-</sup>
Significance obs(exp):
  3.7 (3.1)\sigma
\mu = 1.31
       +0.35-0.33 (stat.)
       +0.31-0.25 (syst.)
\mathbf{\sigma}(\mathsf{tllq}) = 123
               +33-31 (stat.)
               +29-23 (syst.)
```

- ▶ Where does the difference between the cross sections come from?
- ls there any significant difference in the analysis strategy?

Signal samples & theory cross section

- ☐ Signal MC: LO rescaled to NLO.
- ☐ Theory cross section:
 - Z boson is forced to be on shell,
 - no cuts are applied,
 - □4-flavour scheme.
 - $\Box \sigma_{NLO}(tZq) = 800 \text{ fb}$ $\Box \pm 6/7\% \text{ scale}$

ATLAS

- ▶ Tau leptonic decays included.
- Different scale choice between ATLAS and CMS.
- ▶ Theory paper https://arxiv.org/abs/1302.3856 ▶ $\sigma_{NLO}(tZq) \sim 820 \text{ fb.}$

- Signal MC: NLO.
- Theory cross section:
 - \blacksquare Z boson can be off shell/ γ^* is also included,
 - ■m_{||} > 30 GeV,
 - ■5-flavour scheme (4FS for MC generation).

CMS

- $\sigma_{NLO}(t|lq) = 94 \text{ fb}$
 - ■±2% scale
 - ■±2.5% PDF

Event selection

```
Trigger
                                                               ATLAS
      □ single lepton triggers
Leptons
      exactly three
      \Box p_{T}(lep) > 28/25/15 \text{ GeV}
      □≥ I OSSF pair
      \square |\mathbf{m}_{\parallel} - \mathbf{m}_{7}| < 10 \text{ GeV}
Jets
      □ exactly two
      \square p_{\mathsf{T}}(\mathsf{jet}) > 30 \text{ GeV}
      ☐ I b-tagged (77% WP, I% mistag)
\square m_{\mathsf{T}}(\mathsf{W}) > 20 \; \mathsf{GeV}
```

```
Trigger
                                             CMS
    ■OR of 1/2/3 lepton triggers
Leptons
    exactly three
    ■p<sub>T</sub>(lep) > 25 GeV
   ■≥ I OSSF pair
    ||m_{||} - m_{7}| < 15 \text{ GeV}
ets
    two or three
    ■p<sub>T</sub>(jet) > 30 GeV
    ■ I b-tagged (83% WP, 10% mistag)
```

▶ TRIGGER & LEPTON p_T

 \triangleright Keeping the 3rd lepton p_T lower increases the Z+jet contamination, giving a better handle on this bkg when training the NN.

- Connected with LO vs NLO signal MC (LO does not take into account large fraction of signal in the 3 jets bin)
- Having 3 jets might create ambiguity in defining the forward jet.
- b-tagging WP

Background estimation

- Similar multivariate approach.
 - ATLAS uses NN,
 - CMS uses Boosted Decision Trees (BDT).
 - Training w/o fake estimation included.
- Different fitting.
 - ATLAS uses only I SR.
 - CMS uses one SR per channel (eee, eeµ, eµµ and $\mu\mu\mu$) and control regions to constrain backgrounds.

- \triangleright Signal \rightarrow tZq = tZq
- \triangleright Fakes \rightarrow t \overline{t} + tW + Z+jets = NPL
- \triangleright Diboson \rightarrow Diboson = ZZ + WZ+c/b/light
- \triangleright top \rightarrow ttV + ttH + tWZ = tWZ + ttH + ttW + ttZ

	ATL	_AS	CI	MS
Signal	26	18%	32	9%
Fakes	5 I	35%	91	26%
Diboson	48	33%	186	54%
top	19	13%	35	10%

41

Outline

- **▶** Introduction
 - ▶ The top quark
 - Single top quark production at the LHC
 - Single top quark production in association with a Z boson
- ▶ The ATLAS Experiment
- Standard Model tZq production
 - Event selection
 - Background estimation
 - Multivariate analysis
 - Results
- ▶ ATLAS & CMS comparison
- Conclusions and outlook

Conclusions and outlook

- ▶ Clear evidence of single top production in association with a Z boson in the t-channel.
- Observed (expected) significance of extracted signal:

$$4.2\sigma$$
 (5.4 σ)

▶ Measured cross-section:

$$600 \pm 170 \text{ (stat.)} \pm 140 \text{ (syst.)} \text{ fb}$$

to be compared to the NLO prediction of 800 fb.

Conclusions and outlook

- Evidence is just the beginning of a long journey.
- ▶ The LHC Run2&3 and the HL-LHC will give the opportunity to study the top sector in more detail.
 - ▶ tZq observation with 100 fb .
 - Possibility to look for the production of a single top in association with a Higgs boson with HL-LHC data.

Stay tuned for new interesting results!

40 30 20 10 10 11 12 13 14 √s [TeV]

from 10.1103/PhysRevD.87.114006

BackUp

Pixel Detector Upgrade

The ATLAS Inner Detector is made of three sub-detectors:

Silicon Pixel, Silicon Strip and R = 1082 mmBarrel section **TRT** (Drift Tubes) A new innermost layer (IBL), mounted on a narrower beam pipe, was installed TRT in ATLAS in May 2014 Smaller pixel size (50x250 vs 50x400 µm) Closer to interaction region (R~3.3cm) R = 554mmR = 514mmSignificantly more radiation hard R = 443 mm $H \rightarrow bb$ primary physics R = 371mmTRT motivation for the new detector! R = 299 mmSCT **Pixels** R = 122.5 mmR = 88.5 mm**Pixels IBL** R = 50.5 mmR = 33.25 mmd here! R = 0 mm

Background estimation - tt

- Normalisation corrected using scale factor derived in ttVR (OSOF, to reduce Z+jets contamination).
- ▶ Average of various scale factors obtained from different dilepton invariant mass cuts.
- Uncertainty on scale factor from:
 - variation of the mll requirement,
 - statistical uncertainty of the sample.

$$SF_{t\overline{t}} = 1.21 \pm 0.51$$

Variable	Definition	b
$-{ \eta(j) }$	Absolute value of untagged jet η	
$p_{\mathrm{T}}(\mathrm{j})$	Untagged jet p_{T}	$ar{b}$
m_t	Reconstructed top-quark mass	
$p_{\mathrm{T}}(\ell^{W})$	$p_{\rm T}$ of the lepton from the W-boson decay	
$\Delta R(\mathrm{j},Z)$	ΔR between the untagged jet and the Z boson	
$m_{\mathrm{T}}(\ell, E_{\mathrm{T}}^{\mathrm{miss}})$	Transverse mass of W boson	
$p_{ m T}(t)$	Reconstructed top-quark p_{T}	
$p_{\mathrm{T}}(b)$	Tagged jet $p_{\rm T}$	
$p_{\mathrm{T}}(Z)$	$p_{\rm T}$ of the reconstructed Z boson	
$ \eta(\ell^{W}) $	Absolute value of η of the lepton coming from the W-	-boson decay

Variable	Definition	
$ \eta(j) $	Absolute value of untagged jet η	<u></u>
$p_{\mathrm{T}}(\mathrm{j})$	Untagged jet p_{T}	$-\bar{b}$
m_t	Reconstructed top-quark mass	
$p_{\mathrm{T}}(\ell^{W})$	p_{T} of the lepton from the W-boson decay	
$\Delta R(\mathrm{j},Z)$	ΔR between the untagged jet and the Z boson	
$m_{\mathrm{T}}(\ell, E_{\mathrm{T}}^{\mathrm{miss}})$	Transverse mass of W boson	
$p_{ m T}(t)$	Reconstructed top-quark p_{T}	
$p_{\mathrm{T}}(b)$	Tagged jet $p_{\rm T}$	
$p_{\mathrm{T}}(Z)$	p_{T} of the reconstructed Z boson	
$ \eta(\ell^W) $	Absolute value of η of the lepton coming from the W-boson decay	7

Variable	Definition	b
$ \eta(j) $	Absolute value of untagged jet η	
$p_{\mathrm{T}}(\mathrm{j})$	Untagged jet p_{T}	\bar{b}
m_t	Reconstructed top-quark mass	
$p_{\mathrm{T}}(\ell^{W})$	$p_{\rm T}$ of the lepton from the W-boson decay	
$\Delta R(\mathrm{j},Z)$	ΔR between the untagged jet and the Z boson	
$m_{\mathrm{T}}(\ell, E_{\mathrm{T}}^{\mathrm{miss}})$	Transverse mass of W boson	
$p_{\mathrm{T}}(t)$	Reconstructed top-quark p_{T}	
$p_{\mathrm{T}}(b)$	Tagged jet $p_{\rm T}$	
$p_{\mathrm{T}}(Z)$	$p_{\rm T}$ of the reconstructed Z boson	
$ \eta(\ell^W) $	Absolute value of η of the lepton coming from the W-boso	n decay

Variable	Definition	b
$ \eta(j) $	Absolute value of untagged jet η	
$p_{\mathrm{T}}(\mathrm{j})$	Untagged jet p_{T}	$ar{b}$
m_t	Reconstructed top-quark mass	
$p_{\mathrm{T}}(\ell^{W})$	$p_{\rm T}$ of the lepton from the W-boson decay	
$\Delta R(\mathrm{j},Z)$	ΔR between the untagged jet and the Z boson	
$m_{\mathrm{T}}(\ell, E_{\mathrm{T}}^{\mathrm{miss}})$	Transverse mass of W boson	
$p_{\mathrm{T}}(t)$	Reconstructed top-quark p_{T}	
$p_{ m T}(b)$	Tagged jet $p_{\rm T}$	
$p_{\mathrm{T}}(Z)$	$p_{\rm T}$ of the reconstructed Z boson	
$ \eta(\ell^{W}) $	Absolute value of η of the lepton coming from the W-bos	son decay

	Definition
$-\frac{ \eta(j) }{ \eta(j) }$	Absolute value of untagged jet η
$p_{\mathrm{T}}(\mathrm{j})$	Untagged jet p_{T}
m_t	Reconstructed top-quark mass
$p_{\mathrm{T}}(\ell^{W})$	p_{T} of the lepton from the W-boson decay
$\Delta R(\mathrm{j},Z)$	ΔR between the untagged jet and the Z boson
$m_{\mathrm{T}}(\ell, E_{\mathrm{T}}^{\mathrm{miss}})$	Transverse mass of W boson
$p_{\mathrm{T}}(t)$	Reconstructed top-quark $p_{\rm T}$
$p_{\mathrm{T}}(b)$	Tagged jet $p_{\rm T}$
$p_{ m T}(Z)$	p_{T} of the reconstructed Z boson
$ \eta(\ell^W) $	Absolute value of η of the lepton coming from the W-boson decay

Variable	Definition
$ \eta(\mathrm{j}) $	Absolute value of untagged jet η
$p_{\mathrm{T}}(\mathrm{j})$	Untagged jet p_{T}
m_t	Reconstructed top-quark mass
$p_{\mathrm{T}}(\ell^{W})$	p_{T} of the lepton from the W-boson decay
$\Delta R(\mathrm{j},Z)$	ΔR between the untagged jet and the Z boson
$m_{\mathrm{T}}(\ell, E_{\mathrm{T}}^{\mathrm{miss}})$	Transverse mass of W boson
$p_{ m T}(t)$	Reconstructed top-quark p_{T}
$p_{ m T}(b)$	Tagged jet $p_{\rm T}$
$p_{\mathrm{T}}(Z)$	p_{T} of the reconstructed Z boson
$ \eta(\ell^W) $	Absolute value of η of the lepton coming from the W-boson decay

ATLAS & CMS

Signal samples & theory cross section

	FS	Scale	Cuts	x-sec (fb)	notes
tllq	5	$\mu = \frac{1}{2} \Sigma \sqrt{E^2 - p_z^2}$	_	94	CMS default
tllq	4	$\mu = \frac{1}{2} \Sigma \sqrt{E^2 - p_z^2}$	-	76	4 vs 5 FS 20% effect
tllq	5	$\mu = \frac{1}{2} \Sigma \sqrt{E^2 - p_z^2}$	m _{II} > 80 GeV	89	
tZ(→II)q	5	$\mu = \frac{1}{2} \Sigma \sqrt{E^2 - p_z^2}$	_	86	effect of missing contributions from off-shell/ γ^* and extra diagrams
tZq	4	$\mu = 4\sqrt{m_b^2 + p_{T,b}^2}$	_	800	ATLAS default
tZq	4	$\mu = \frac{1}{2} \Sigma \sqrt{E^2 - p_z^2}$	-	690	scale I 5% effect
tZq	5	$\mu = \frac{1}{2} \Sigma \sqrt{E^2 - p_z^2}$	-	860	4 vs 5 FS 20% effect

- ▶ Need to converge on a common setup.
 - ▶ Include or not γ^* contribution \rightarrow current thinking is to include it
 - ▶ If including γ^* , need to fix an m(ll) requirement \rightarrow 30 GeV seems reasonable from the experimental side
 - ightharpoonup Whether to use 4FS or 5FS ightharpoonup current thinking is 5FS (expected to be more precise for inclusive XS)
 - \triangleright Which scale to use \rightarrow theory guidance appreciated

Background estimation

- It and Z+jets non-prompt lepton backgrounds estimated separately.
 ATLAS
- tt: data/MC SF from OSOF region
 - shape from MC.
- Z+jets: Fake Factor method
 - □e/µ treated separately
 - □ binned in p_T of W lepton
 - □ FF:TTT/LTT in region with $m_T(W) < 20 \text{ GeV}$
 - applied to LTT data.
 - Uncertainty:
 - □30/40% normalisation.

- All "NPL" (non-prompt leptons) sources estimated together.
- "'templates" from data with LTT leptons.
- ■e/µ treated separately.
- "2 step normalisation"
 - ■fit m_T(W) in the Objet CR and get first normalisation factors for all channels.
 - ■NPL e and µ yields: two free parameters independent of each other in the fit.
 - Uncertainty:
 - shape uncertainty based on changing isolation requirements.
 CMS

Background estimation

Cleannal	Namel on of arrests	_
Channel	Number of events Real data	CMS
tZq	26 ± 8	32.3 ± 5.0
$t\overline{t} + tW$ Z + jets	$ \begin{array}{c} 17 \pm 7 \\ 34 \pm 11 \end{array} $	91.3 ± 12.1
Diboson $t\overline{t}V + t\overline{t}H +$	48 ± 12 $- t W Z \qquad 19 \pm 3$	186.4 ± 11.5 34.8 ± 2.5
Total	143 ± 11	J⊤.U <u>+</u> 2.J

- В Signal → tZq = tZq
- ▶ Fakes $\rightarrow t\overline{t}+tW + Z+jets = NPL$
- \triangleright top \rightarrow t $\overline{t}V+t\overline{t}H+tWZ = tWZ + t<math>\overline{t}H + t\overline{t}W + t\overline{t}Z$

	ATL	_AS	CMS		
Signal	26	18%	32	9%	
Fakes	5 I	35%	91	26%	
Diboson	48	33%	186	54%	
top	19	13%	35	10%	

ATLAS

	Process	eee	ee <i>µ</i>	μμе	иµµ	All channels	$\frac{N^{\text{obs}}}{N^{\text{pred}}}$
	tZq	5.0 ± 1.5	6.6±1.9	8.5±2.5	12.3±3.6	32.3±5.0	_
	tīZ	3.7 ± 0.7	4.7 ± 0.9	6.1 ± 1.2	8.0 ± 1.5	$22.4{\pm}2.2$	0.9 ± 0.2
CMS	t t W	0.3 ± 0.1	0.3 ± 0.1	0.7 ± 0.2	0.6 ± 0.2	1.9 ± 0.3	1.0 ± 0.2
	ZZ	4.8 ± 1.3	3.2 ± 0.9	$9.0{\pm}2.5$	7.8 ± 2.2	24.7 ± 3.6	1.3 ± 0.3
post-fit values	WZ+b	3.0 ± 0.9	3.4 ± 1.1	$4.6 {\pm} 1.4$	5.5 ± 1.7	16.6 ± 2.6	1.0 ± 0.2
pose he values	WZ+c	$9.0{\pm}2.4$	13.7 ± 3.7	18.0 ± 4.9	24.2 ± 6.5	64.8 ± 9.3	1.0 ± 0.2
	WZ+light	12.2 ± 1.6	16.6 ± 2.0	$22.4{\pm}2.8$	29.1±3.4	80.3 ± 5.1	0.7 ± 0.1
	tŧH	0.6 ± 0.2	0.9 ± 0.3	1.0 ± 0.3	1.5 ± 0.4	$4.0 {\pm} 0.6$	1.0 ± 0.2
	tWZ	1.0 ± 0.3	1.3 ± 0.4	1.7 ± 0.5	$2.4{\pm}0.7$	$6.5{\pm}1.0$	1.0 ± 0.2
	NPL: electrons	19.2 ± 3.1	0.6 ± 0.1	17.9 ± 2.8	_	37.7 ± 4.2	_
	NPL: muons	_	7.2 ± 2.3	31.1±9.9	15.3±4.9	53.6±11.3	_
	Total	58.8±4.8	58.4±5.5	120.9 ± 12.4	106.6 ± 10.1	344.8±17.6	
	Data	56	58	104	125	343	
dia Dall'Assa		1	ı	' F7	·	1	' I

Multivariate analysis

- **ATLAS**
- ☐ Training with signal and all backgrounds (tt excluded, fakes included)
- □ 10 variables
 - List in the paper
 - \square Most discriminating: $\eta(\text{jet}_{\text{forward}})$ and $p_T(\text{jet}_{\text{forward}})$.

BDT

CMS

- Training with signal and all backgrounds (excluding fakes because of lack of stat.)
- Two BDTs for the 1bj and 2bj SRs.
- Various variables used for training.
 - Including MEM (Matrix Element Method) as input variables.
 - I 0% significance improvement.

Lidia Dell'Asta 58

ATLAS

Fitting O_{NN} in SR (all channels summed together).

Fitting 12 regions simultaneously.

CMS

- **■**eee, eeμ, eμμ, μμμ.
- BDT in Ibjet (signal region).
- ■BDT in 2bjet (to control ttZ).
- m_T(W) in 0bjet (to control WZ+jets).

ATLAS & CMS

- MC signal samples @LO for ATLAS and @NLO for CMS.
- ▶ Theory cross section calculations compatible but with several differences (tZq vs tllq, 4 vs 5 FS, scale choice).
 - Need to converge to a common approach.
- Some different approaches for the <u>event selection</u> (e.g. lepton p_T cuts, number of jets, b-tagging WP) and <u>background estimation</u>.
 - Visible effect on the background composition in the SR.
- ▶ Multivariate analysis (NN for ATLAS and BDT for CMS).
 - Main difference coming from the use of fakes in training.
- Different way of <u>fitting NN/BDT</u> output distributions.