

Design, construction, and performance of the new CMS pixel detector: conceptual differences to ATLAS pixels on micro- and macroscopic level

Malte Backhaus

IPA – Institute for Particle Physics and Astrophysics

CMS Experiment

CMS Experiment

- ECAL and HCAL **inside** solenoid magnet
- ~4T magnetic field in inner detector (ATLAS: 2T)
- Modular design, "Quick" open and closure
- Access to components within ~14 days (ATLAS: ~6 months)

CMS Experiment

Insertion of CMS Pixel Detector: 2008

Insertion of new CMS Pixel Detector: 2017

Insertion of new CMS Pixel Detector: 2017

Motivation for CMS Phase-I Pixels

- CMS pixel detector designed for peak luminosity of $10 \times 10^{33} cm^{-2} s^{-1}$
- Planned increase of luminosity after Long Shutdown 2 to twice nominal luminosity, gradual increase before LS2.
- Performance degradation anticipated, replacement project started in 2009

Motivation for CMS Phase-I Pixels

Secondary Vertex Identification

- Events with long lived hadrons (containing *b*-quarks and *c*-quarks) and τ -leptons are particularly interesting $(H \rightarrow b\bar{b}, H \rightarrow \tau\tau, t \rightarrow bW^{\pm}, ...)$
- Decay in displaced secondary vertices

Secondary Vertex Identification

• Events with long lived hadrons (containing *b*-quarks and *c*-quarks) and τ -leptons are particularly interesting $(H \rightarrow b\bar{b}, H \rightarrow \tau\tau, t \rightarrow bW^{\pm}, ...)$

Decay in displaced secondary vertices

Secondary Vertex Identification

- Events with long lived hadrons (containing *b*-quarks and *c*-quarks) and τ -leptons are particularly interesting $(H \rightarrow b\overline{b}, H \rightarrow \tau\tau, t \rightarrow bW^{\pm}, ...)$
- Decay in displaced secondary vertices

- High detection efficiency
 + additional layer for tracking robustness
- Low fake-hit rate
- Low material
- High vertex resolution...

Simplified Vertex Resolution

Major vertex resolution dependencies \rightarrow Simplified model:

- Two layers of 2D segmented detectors at r₁ and r₂
- Similar segmentation width *d*
- Full efficiency, no detection threshold

Spatial resolution:

Error propagation:

Simplified Vertex Resolution

Major vertex resolution dependencies \rightarrow Simplified model:

- Two layers of 2D segmented detectors at r₁ and r₂
- Similar segmentation width *d*
- Full efficiency, no detection threshold

Spatial resolution:

$\sigma_{vtx} = \frac{r_2}{r_2 - r_1} \sigma \qquad \sigma_{vtx} = \frac{r_1}{r_2 - r_1} \sigma$

Vertex Extrapolation:

$$\sigma_{vtx} = \sigma_{vtx} \oplus \sigma_{vtx} \cong \sqrt{\left(\frac{d}{\sqrt{12}}\right)^2 \cdot \left(1 + \frac{r_1^2}{(r_2 - r_1)^2}\right)}$$

Error propagation:

Simplified Vertex Resolution

Major vertex resolution dependencies \rightarrow Simplified model:

- Two layers of 2D segmented detectors at r₁ and r₂
- Similar segmentation width *d*
- Full efficiency, no detection threshold

Spatial resolution:

$$\sigma_{vtx} = \frac{r_2}{r_2 - r_1} \sigma \qquad \sigma_{vtx} = \frac{r_1}{r_2 - r_1} \sigma$$

Vertex Extrapolation:

$$\sigma_{vtx} = \sigma_{vtx} \oplus \sigma_{vtx} \cong \sqrt{\left(\frac{d}{\sqrt{12}}\right)^2 \cdot \left(1 + \frac{r_1^2}{(r_2 - r_1)^2}\right)} \cong \sqrt{\left(\frac{d}{\sqrt{12}}\right)^2 \cdot \left(1 + \frac{r_1^2}{(r_2 - r_1)^2}\right) + (2r_1 - r_0)^2 \cdot \left(\frac{13.6 \text{ MeV}}{pv}\right)^2 \frac{l}{X_0}}$$

Error propagation:

16

- High detection efficiency
 + additional layer for tracking robustness
- Low fake-hit rate
- Low material
- High vertex resolution...
 - High spatial resolution
 - Small distance to interaction point
 - Large lever arm

- High detection efficiency
 + additional layer for tracking robustness
- Low fake-hit rate
- Low material
- High vertex resolution...
 - High spatial resolution
 - Small distance to interaction point
 - Large lever arm

- High detection efficiency
 + additional layer for tracking robustness
- Low fake-hit rate
- Low material
- High vertex resolution...
 - High spatial resolution
 - Small distance to interaction point
 - Large lever arm

IPA – Institute for Particle Physics and Astrophysics

- DC-DC power system
 four lovers without service n
 - \rightarrow four layers without service material increase
- CO₂ bi-phase cooling
- · Leightweight carbon support ladders / rings
- Service components placement at larger z

Towards high spatial resolution – ATLAS IBL

• Small segmentation pitch improves resolution: $\sigma = \frac{d}{\sqrt{12}}$

- ATLAS IBL: 50 $\mu m r \phi$ resolution $\rightarrow \sigma = 15 \mu m$
- Analog charge information \rightarrow charge weighting \rightarrow improved resolution

Towards high spatial resolution – ATLAS IBL

• Small segmentation pitch improves resolution: $\sigma = \frac{d}{\sqrt{12}}$

- ATLAS IBL: 50 $\mu m r \phi$ resolution $\rightarrow \sigma = 15 \mu m$
- Analog charge information \rightarrow charge weighting \rightarrow improved resolution

Towards high spatial resolution – ATLAS IBL

- Small segmentation pitch improves resolution: $\sigma = \frac{d}{\sqrt{12}}$
- ATLAS IBL: 50 $\mu m \ r\phi$ resolution $\rightarrow \sigma = 15 \ \mu m$
- Analog charge information \rightarrow charge weighting \rightarrow improved resolution

Design system for 2-3 pixel cluster size

Towards high spatial resolution – ATLAS IBL

Towards high spatial resolution – CMS Pixel

- Small segmentation pitch improves resolution: $\sigma = \frac{d}{\sqrt{12}}$
- CMS pixel: 100 $\mu m r \phi$ resolution $\rightarrow \sigma = 30 \mu m$
- Analog charge information \rightarrow charge weighting \rightarrow improved resolution

Design system for 2-3 pixel cluster size

Towards high spatial resolution – CMS Pixel

- No tilt of ladders
 → orthogonal incident angle
- Use strong magnetic field in CMS
 → Charge drift in Lorentz angle (21°)
 → 2-3 hit cluster size
- Massive resolution improvement if charge resolution is good (100 μm pixel pitch)
 → Analog pixel cell readout
 → 8bit ADC
- Sensor thickness chosen for optimal cluster size
 - \rightarrow 285 μm active thickness
 - → Expected performance decrease after type inversion / partial depletion

Towards high spatial resolution – CMS Pixel

- No tilt of ladders
 → orthogonal incident angle
- Use strong magnetic field in CMS

 → Charge drift in Lorentz angle (21°)
 → 2-3 hit cluster size
- Massive resolution improvement if charge resolution is good (100 µm pixel pitch)
 → Analog pixel cell readout
 → 8bit ADC
- Sensor thickness chosen for optimal cluster size
 - \rightarrow 285 μm active thickness
 - → Expected performance decrease after type inversion / partial depletion

Modules for CMS phase 1 pixels

Sensor:

- Same as phase 0, 16 ROCs per sensor
- n-in-n silicon design, 4160 pixels / ROC
- pixel size: $100 \ \mu m \times 150 \ \mu m$
- Edge pixel size increased, no ganged pixels
- 285 μm active thickness

ROC (ReadOut Chip):

- 250 nm CMOS technology
- 160 *Mbit/s* readout
- All transistors enclosed layout, manual layout and routing
- Column-drain architecture with analog readout, single on-chip ADC for digital data transmission
- TBM (Token Bit Manager):
 - Interface to ROCs + readout control of ROCs, 400 *Mbit/s* readout
 - Different number of TBM cores for variable bandwidth: L3 + L4: 1 core, L2: 2 cores, L1: 4 cores

Readout chip overview

Column drain architecture:

- 1. Copy all hits from matrix into buffers
- 2. Wait for trigger
- 3. Digitize hit and send data (or delete hit)
- Very similar architecture in ATLAS FE-I3, digitization using ToT mechanism
 → clock in matrix, increased current consumption
- Fully analog matrix readout in CMS pixels
 → no clock in matrix, low current consumption

Designed by PSI

Readout chip overview

Column drain architecture:

- 1. Copy all hits from matrix into buffers
- 2. Wait for trigger
- 3. Digitize hit and send data (or delete hit)
- Very similar architecture in ATLAS FE-I3, digitization using ToT mechanism
 → clock in matrix, increased current consumption
- Fully analog matrix readout in CMS pixels
 → no clock in matrix, low current consumption
- 0.1 W/cm² power consumption (FE-I4: 0.2 W/cm²)
- Size: 7.9 *mm* × 10.2 *mm*
- 160 Mbit/s readout
- < 2000 e threshold</p>
- 8 bit pulse height charge information
- Data loss: 1.6% at 150 MHz/cm²
 → Buffer depth increase wrt. phase 0
 → Inefficiency due to copy time

Designed by PSI

From CMS phase 0 to phase 1 ROCs

PSI46 - phase 0 all layers

psi46dig – phase 1 L2-L4

PROC600 - phase 1 L1

- DB: 32, TB: 12
- RO: 40 MHz analog
- Analog Column Drain architecture

- DB: 80, TB: 24
- RO: 160 MHz (digitized)
- Analog Column Drain architecture
- ADC + 64 ReadOut Buffers

- DB: 4x56, TB: 40
- RO: 160 MHz (digitized)
- Analog *dynamic cluster* Column Drain architecture
- ADC + 64 ReadOut Buffers

Phase 1 ROCs efficiency

- Generate flux with xrays or protons → measure pixel hit rate
- Test charge injection in single pixel \rightarrow measure detection efficiency
- Significant efficiency increase wrt. phase 0 ROCs
 → increase of buffer depth (+*cluster copying* in PROC600)
- Performed on all modules during QC tests for efficiency validation

FE-I4 Overview

- Largest chip in high energy physics: 19 x 20 mm² → ~6 times size of FE-I3 or CMS ROCs.
- No column-drain architecture: avoid copying of untriggered data
 → buffer and trigger logic in pixel cell
 → increase of digital logic
 → power consumption: 0.2 W/cm²
- Readout structured in four pixel regions,
 → efficient cluster readout

20.2 mm

40 double-columns 20 mm 00 00 0 00 00 00 0 00 00 00 0 00 00 0 00 00 0 00 00 00 0 \bigcirc 00 00 00 00 00 0 0 Analog Front End **Digital Pixel Region** Analog Front End 0 Hit Processing Hit Processing 0 Buffer Hamming Encoder Buffer 0 0 **Trigger Logic** Buffer Buffer 0 Hit Processing Hit Processing 0 00 0 00 00 00/ \mathbf{O} 00 00 00 00 00 0 0 rows OÀ 00 ØO 0 00 0.0 0 00 00 00 100 0 0 0 0 336 0 C 00 00 00 00 0 0 00 00 00 0 0 0 0 00 00 0 0 C 100 0 0 00 0 00 60 0 0 0 00 00 0 mm 0 0 0 \cap 0 0 0 00 00 2 00 0 0 00 0 \bigcirc 00 00 0 0 00 0 0 \cap 0 End of Digital Columns Logic Token Data 25b L1T, Token, Read **Pixel** Config Data 8b End of Chip Logic Data Output Hamming Data Format/ Hamming Hamming Block FIFO Decoder Encoder Compress Decoder 8b10b Encoder Configuration Bias Current EFUSE Serializer DACs Register Generator Ref. Bypass Scan Data 1b chains CLK Cnfg Shunt DC-DC fastCLK Voltage Command Power LDO Ref. Conv. Decoder **IOMux** PLL RX Pad Frame Data Sel In Out Aux Ref. Data [3] [4] [3] Clock Clock -Out -In

IPA – Institute for Particle Physics and Astrophysics

ATLAS FE-I4 effciency

- Efficiency validation in FE-I4 can be done with internal injection (done during QC tests)
- Performed comparison measurement using xrays and similar settings
- Pulse Height measurement allows faster amplifier return than ToT
 → higher efficiency
- Significanly less copy/buffer inefficiency in FE-I4

ATLAS FE-I4 effciency

- Efficiency validation in FE-I4 can be done with internal injection (done during QC tests)
- Performed comparison measurement using xrays and similar settings
- Pulse Height measurement allows faster amplifier return than ToT
 → higher efficiency
- Significanly less copy/buffer inefficiency in FE-I4

Efficiency improvement in detector

- CMS phase 1 pixel detector with very good hit finding efficiency
- Even the new Layer 1 at smaller radius exceeds phase 0 performance, at $12 \times 10^{33} cm^{-2} s^{-1}$: 96% \rightarrow 99% (radius: 4.4 cm \rightarrow 2.9 cm)

Phase 1 ROCs charge resolution

No pixel by pixel PH adjustment

- Good uniformity in psi46dig
- Parallel copying of four hits in PROC600
 - → four current mirrors per double column in same area
 - \rightarrow reduction of transistor size required
 - \rightarrow relative production variation increased

Phase 1 detector performance: spatial resolution

Phase 1 detector performance: spatial resolution

Phase 1 detector performance: timing

- Fine time adjustment in pp collisions
 → PROC600 faster than psi46dig
- Layer 1 and layer 2 on same clock link
- Timing optimized for layer 1 efficiency
 → slightly early for layer 2
- Improved situation by adjusting on-chip bias settings

Phase 1 detector performance: occupancy

Phase 1 detector performance: TBM SEUs

- SEU problem in TBMs observed
- FlipFlop not connected to reset
 → recovery with power-cycle
- Effect depending on luminosity, position, module type (# TBM cores)
 - \rightarrow Layer 1 most effected,
 - holes with granularity of 4 ROCs
 - \rightarrow dynamic inefficiency maps

Summary

- CMS installed a completely new pixel detector in February/March 2017
- Construction as well as commissioning very challenging
 → many difficult issues solved or optimizations found
 - \rightarrow detector shows good or better performance than previous detector in 2017!
 - \rightarrow Congratulations to the commissioning and operation team!
- Performance of detector "dynamic", commissioning still ongoing and new challenges appearing
 - \rightarrow action needed for 2018 run
- Hopefully efficient use of winter break
 → Rapid access to detector pays off!

backup

Readout chip overview

Sensitive pixel matrix

Processing periphery