

Design, construction, and performance of the new CMS pixel detector: conceptual differences to ATLAS pixels on micro- and macroscopic level

Malte Backhaus

IPA – Institute for Particle Physics and Astrophysics

CMS Experiment

CMS Experiment

- ECAL and HCAL **inside** solenoid magnet
- ~4T magnetic field in inner detector (ATLAS: 2T)
- Modular design, "Quick" open and closure
- Access to components within $~14$ days (ATLAS: $~6$ months)

CMS Experiment

Insertion of CMS Pixel Detector: 2008

Insertion of new CMS Pixel Detector: 2017

Insertion of new CMS Pixel Detector: 2017

Motivation for CMS Phase-I Pixels

- CMS pixel detector designed for peak luminosity of $10 \times 10^{33} cm^{-2}s^{-1}$
- Planned increase of luminosity after Long Shutdown 2 to twice nominal luminosity, gradual increase before LS2.
- Performance degradation anticipated, replacement project started in 2009

Motivation for CMS Phase-I Pixels

Secondary Vertex Identification

- Events with long lived hadrons (containing b-quarks and c-quarks) and *τ*-leptons are particularly interesting $(H \to b\bar{b}, H \to \tau\tau, t \to bW^{\pm}, ...)$
- Decay in displaced *secondary vertices*

Secondary Vertex Identification

E Events with long lived hadrons (containing b-quarks and c -quarks) and τ -leptons are particularly interesting $(H \to b\bar{b}, H \to \tau\tau, t \to bW^{\pm}, ...)$

Decay in displaced *secondary vertices*

Secondary Vertex Identification

- Events with long lived hadrons (containing b-quarks and c-quarks) and *τ*-leptons are particularly interesting $(H \to b\bar{b}, H \to \tau\tau, t \to bW^{\pm}, ...)$
- Decay in displaced *secondary vertices*

- **High detection efficiency** + additional layer for tracking robustness
- **Low fake-hit rate**
- **Low material**
- **High vertex resolution...**

Simplified Vertex Resolution

Major vertex resolution dependencies \rightarrow Simplified model:

- Two layers of 2D segmented detectors at r_1 and r_2
- Similar segmentation width d
- **Full efficiency, no detection threshold**

Spatial resolution:

Error propagation:

Simplified Vertex Resolution

Major vertex resolution dependencies \rightarrow Simplified model:

- Two layers of 2D segmented detectors at r_1 and r_2
- Similar segmentation width d
- **Full efficiency, no detection threshold**

Spatial resolution:

$\sigma_{vtx} =$ $r₂$ $r_2 - r_1$ σ σ_{vtx} = r_1 $r_2 - r_1$ $\sigma = \frac{1}{\sqrt{12}}$ $\sigma_{vtx} = \frac{12}{\sqrt{12}} \sigma$ $\sigma_{vtx} = \frac{11}{\sqrt{12}} \sigma$

Vertex Extrapolation:

$$
\sigma_{vtx} = \sigma_{vtx} \oplus \sigma_{vtx} \cong \sqrt{\left(\frac{d}{\sqrt{12}}\right)^2 \cdot \left(1 + \frac{r_1^2}{(r_2 - r_1)^2}\right)}
$$

Error propagation:

Simplified Vertex Resolution

Major vertex resolution dependencies \rightarrow Simplified model:

- Two layers of 2D segmented detectors at r_1 and r_2
- Similar segmentation width d
- **Full efficiency, no detection threshold**

Spatial resolution:

$$
\sigma = \frac{d}{\sqrt{12}} \qquad \qquad \sigma_{vtx} = \frac{r_2}{r_2 - r_1} \sigma \qquad \qquad \sigma_{vtx} = \frac{r_1}{r_2 - r_1} \sigma
$$

Vertex Extrapolation:
\n
$$
\sigma_{vtx} = \sigma_{vtx} \oplus \sigma_{vtx} \cong \sqrt{\left(\frac{d}{\sqrt{12}}\right)^2 \cdot \left(1 + \frac{r_1^2}{(r_2 - r_1)^2}\right)} \cong \sqrt{\left(\frac{d}{\sqrt{12}}\right)^2 \cdot \left(1 + \frac{r_1^2}{(r_2 - r_1)^2}\right) + (2r_1 - r_0)^2 \cdot \left(\frac{13.6 \text{ MeV}}{pv}\right)^2 \frac{l}{X_0}}
$$

Error propagation:

16

- **High detection efficiency** + additional layer for tracking robustness
- **Low fake-hit rate**
- **Low material**
- **High vertex resolution...**
	- **High spatial resolution**
	- **Small distance to interaction point**
	- **Large lever arm**

- High detection efficiency + additional layer for tracking robustness
- Low fake-hit rate
- **Low material**
- **High vertex resolution...**
	- High spatial resolution
	- Small distance to interaction point
	- Large lever arm

- High detection efficiency + additional layer for tracking robustness
- Low fake-hit rate
- Low material
- High vertex resolution…
	- High spatial resolution
	- Small distance to interaction point
	- Large lever arm

IPA – Institute for Particle Physics and Astrophysics Contract the Contract Contract

- DC-DC power system
	- \rightarrow four layers without service material increase
- $CO₂$ bi-phase cooling
- Leightweight carbon support ladders / rings
- Service components placement at larger z

Towards high spatial resolution – ATLAS IBL

- Small segmentation pitch improves resolution: $\sigma =$ \boldsymbol{d} 12
- **ATLAS IBL:** 50 μ m $r\phi$ resolution $\rightarrow \sigma = 15 \ \mu m$
- Analog charge information \rightarrow charge weighting \rightarrow improved resolution

Towards high spatial resolution – ATLAS IBL

- Small segmentation pitch improves resolution: $\sigma =$ \boldsymbol{d} 12
- **ATLAS IBL:** 50 μ m $r\phi$ resolution $\rightarrow \sigma = 15 \ \mu m$
- Analog charge information \rightarrow charge weighting \rightarrow improved resolution

Towards high spatial resolution – ATLAS IBL

- Small segmentation pitch improves resolution: $\sigma =$ \boldsymbol{d} 12
- **ATLAS IBL:** 50 μ m $r\phi$ resolution $\rightarrow \sigma = 15 \ \mu m$
- Analog charge information \rightarrow charge weighting \rightarrow improved resolution

Design system for 2-3 pixel cluster size

Towards high spatial resolution – ATLAS IBL

Towards high spatial resolution – CMS Pixel

- Small segmentation pitch improves resolution: $\sigma =$ \boldsymbol{d} 12
- **CMS** pixel: **100** μ m $r\phi$ resolution \rightarrow $\sigma = 30 \ \mu$ m
- Analog charge information \rightarrow charge weighting \rightarrow improved resolution

Design system for 2-3 pixel cluster size

Towards high spatial resolution – CMS Pixel

- No tilt of ladders \rightarrow orthogonal incident angle
- Use strong magnetic field in CMS → Charge drift in Lorentz angle (21°) \rightarrow 2-3 hit cluster size
- Massive resolution improvement if charge resolution is good $(100 \ \mu m)$ pixel pitch) \rightarrow Analog pixel cell readout \rightarrow 8bit ADC
- Sensor thickness chosen for optimal cluster size
	- \rightarrow 285 μ m active thickness
	- \rightarrow Expected performance decrease after type inversion / partial depletion

Towards high spatial resolution – CMS Pixel

- No tilt of ladders \rightarrow orthogonal incident angle
- Use strong magnetic field in CMS → Charge drift in Lorentz angle (21°) \rightarrow 2-3 hit cluster size
- Massive resolution improvement if charge resolution is good $(100 \ \mu m)$ pixel pitch) \rightarrow Analog pixel cell readout \rightarrow 8bit ADC
- Sensor thickness chosen for optimal cluster size
	- \rightarrow 285 μ m active thickness
	- \rightarrow Expected performance decrease after type inversion / partial depletion

Modules for CMS phase 1 pixels

Sensor:

- Same as phase 0, 16 ROCs per sensor
- n-in-n silicon design, 4160 pixels / ROC
- pixel size: $100 \ \mu m \times 150 \ \mu m$
- Edge pixel size increased, no ganged pixels
- 285 μ m active thickness

ROC (ReadOut Chip):

- 250 nm CMOS technology
- 160 Mbit/s readout
- All transistors enclosed layout, manual layout and routing
- Column-drain architecture with analog readout, single on-chip ADC for digital data transmission
- TBM (Token Bit Manager):
	- Interface to ROCs + readout control of ROCs, 400 *Mbit/s* readout
	- Different number of TBM cores for variable bandwidth: L3 + L4: 1 core, L2: 2 cores, L1: 4 cores

Malte Backhaus | 24/11/2017 | 27

Readout chip overview

Column drain architecture:

- 1. Copy **all** hits from matrix into buffers
- 2. Wait for trigger
- 3. Digitize hit and send data (or delete hit)
- Very similar architecture in ATLAS FE-I3, digitization using ToT mechanism \rightarrow clock in matrix, increased current consumption
- **Fully analog matrix readout in CMS pixels** \rightarrow no clock in matrix, low current consumption

Designed by PSI

Readout chip overview

Column drain architecture:

- 1. Copy **all** hits from matrix into buffers
- 2. Wait for trigger
- Digitize hit and send data (or delete hit)
- Very similar architecture in ATLAS FE-I3, digitization using ToT mechanism \rightarrow clock in matrix, increased current consumption
- **Fully analog matrix readout in CMS pixels** \rightarrow no clock in matrix, low current consumption
- $0.1 W/cm²$ power consumption $(FE-14: 0.2 W/cm²)$
- Size: 7.9 mm \times 10.2 mm
- 160 $Mbit/s$ readout
- $<$ 2000 e threshold
- 8 *bit* pulse height charge information
- Data loss: 1.6% at 150 MHz/cm² \rightarrow Buffer depth increase wrt. phase 0 \rightarrow Inefficiency due to copy time
- **IPA Institute for Particle Physics and Astrophysics**

Designed by PSI

From CMS phase 0 to phase 1 ROCs

PSI46 – phase 0 all layers psi46dig – phase 1 L2-L4 PROC600 – phase 1 L1

- DB: 32, TB: 12
- RO: 40 MHz analog
- Analog Column Drain architecture
- DB: 80, TB: 24
- RO: 160 MHz (digitized)
- Analog Column Drain architecture
- ADC + 64 ReadOut Buffers
- DB: 4x56, TB: 40
- RO: 160 MHz (digitized)
- Analog *dynamic cluster* Column Drain architecture
- ADC + 64 ReadOut Buffers

Phase 1 ROCs efficiency

- Generate flux with xrays or protons \rightarrow measure pixel hit rate
- Test charge injection in single pixel \rightarrow measure detection efficiency
- Significant efficiency increase wrt. phase 0 ROCs → increase of buffer depth (+*cluster copying* in PROC600)
- Performed on all modules during QC tests for efficiency validation

FE-I4 Overview

- Largest chip in high energy physics: 19 x 20 mm² \rightarrow ~6 times size of FE-I3 or CMS ROCs.
- No column-drain architecture: avoid copying of untriggered data \rightarrow buffer and trigger logic in pixel cell \rightarrow increase of digital logic \rightarrow power consumption: 0.2 W/cm²
- Readout structured in four pixel regions, \rightarrow efficient cluster readout

20.2 mm 18.8 mm 2.0 mm

40 double-columns 20 mm $\overline{\circ}$ \circ \circ \circ റിറ \circ Ō $\overline{\circ}$ $\overline{\circ}$ $\overline{\circ}$ $\overline{\circ}$ $\overline{\circ}$ \circ \circ \circ \circ \circ \circ \circ \circ \circ \overline{O} 00 \circ റിറ ାଠ റിറ \circ \circ **Digital Pixel Region Analog Front End** Analog Front End Ō **Hit Processing Hit Processing** \circ Buffer **Hamming Encoder** Buffer $\overline{\circ}$ Buffer **Trigger Logic** \circ **Ruffer** $\overline{\circ}$ **Hit Processing Hit Processing** Ŏ $\overline{\circ}$ ାଠ \circ \circ \circ QIO $\overline{\circ}$ $\overline{\circ}$ $\overline{\circ}$ \circ \circ Ō \circ rows \circ $\overline{\circ}$ 10 \circ | \circ \circ GI O Ō $\circ \circ$ \circ $\overline{\mathcal{O}}$ \circ \overline{C} \circ \circ $\overline{\circ}$ 336 $\tilde{\mathcal{E}}$ $\overline{\circ}$ $\circ \circ$ 0 \circ \circ റിറ \circ \overline{O} $\overline{\circ}$ $\overline{\circ}$ $\overline{\circ}$ \circ Ō \circ lo $\frac{1}{10}$ ∞ \circ \circ \overline{C} \circ \circ olo \circ \circ .6∣0 \circ Ō \circ \mathcal{D} \circ \circ \circ mm \circ \bigcirc Č ∩ \circ റിറ \circ ↷ $\overline{ }$ \circ Ο 10 $\overline{\circ}$ \circ \circ \circ Ο \circ ø റിറ \circ \circ ∩ \bigcap \bigcirc \circ End of Digital Columns Logic Token Data 25b L1T, Token, Read **Pixel Config** Data 8 **End of Chip Logic** Data Output Data Format/ Hamming Hamming Hamming **Block FIFO** Decoder Compress Encoder Decoder 8b10b Encoder Configuration Current **Bias EFUSE** Serializer $2mm$ **DACs** Register Generator Ref Bypass Scan Data 1b chains CLK Cnfg L $\sqrt{\frac{1}{1}}$ fastCLK Shunt DC-DC Voltage Command Power LDO Conv. Ref. Decoder **IOMux** PLL \Box Pad Frame $\left(\sqrt{RX}\right)$ Data Data Sel Out Aux Ref. In. [3] [4] [3] Clock Clock $-_{ln}$ $-Out$

IPA – Institute for Particle Physics and Astrophysics

ATLAS FE-I4 effciency

- Efficiency validation in FE-I4 can be done with internal injection (done during QC tests)
- **Performed comparison measurement using xrays and similar settings**
- Pulse Height measurement allows faster amplifier return than ToT \rightarrow higher efficiency
- Significanly less copy/buffer inefficiency in FE-I4

ATLAS FE-I4 effciency

- Efficiency validation in FE-I4 can be done with internal injection (done during QC tests)
- **Performed comparison measurement using xrays and similar settings**
- Pulse Height measurement allows faster amplifier return than ToT \rightarrow higher efficiency
- **Significanly less copy/buffer inefficiency in FE-I4**

Efficiency improvement in detector

- CMS phase 1 pixel detector with very good hit finding efficiency
- Even the new Layer 1 at smaller radius exceeds phase 0 performance, at 12 × 10³³ cm⁻²s⁻¹: 96% → 99% (radius: 4.4 cm → 2.9 cm)

Phase 1 ROCs charge resolution

No pixel by pixel PH adjustment

- Good uniformity in psi46dig
- Parallel copying of four hits in PROC600
	- \rightarrow four current mirrors per double column in same area
	- \rightarrow reduction of transistor size required
	- \rightarrow relative production variation increased

Phase 1 detector performance: spatial resolution

Phase 1 detector performance: spatial resolution

Phase 1 detector performance: timing

- Fine time adjustment in pp collisions \rightarrow PROC600 faster than psi46dig
- **Layer 1 and layer 2 on same clock link**
- Timing optimized for layer 1 efficiency \rightarrow slightly early for layer 2
- Improved situation by adjusting on-chip bias settings

Phase 1 detector performance: occupancy

Phase 1 detector performance: TBM SEUs

- SEU problem in TBMs observed
- FlipFlop not connected to reset \rightarrow recovery with power-cycle
- Effect depending on luminosity, position, module type (# TBM cores)
	- \rightarrow Layer 1 most effected,
	- holes with granularity of 4 ROCs
	- \rightarrow dynamic inefficiency maps

Summary

- CMS installed a completely new pixel detector in February/March 2017
- Construction as well as commissioning very challenging \rightarrow many difficult issues solved or optimizations found
	- \rightarrow detector shows good or better performance than previous detector in 2017!
		- \rightarrow Congratulations to the commissioning and operation team!
- Performance of detector "dynamic", commissioning still ongoing and new challenges appearing

 \rightarrow action needed for 2018 run

 Hopefully efficient use of winter break \rightarrow Rapid access to detector pays off!

backup

Readout chip overview

Sensitive pixel matrix

Sensitive pixel matrix

Processing periphery

Processing periphery