

HGCROC-Vitest results

C. De La Taille on behalf of CMS HGCAL **TWEPP 2018**

Z

Organization for Micro-Electronics desiGn and Applications

HGCAL: CMS EndCap Calorimeters for the LHC Phase-II upgrade

New Endcap Calorimeters

- Rad. tolerant
- High Granularity: increased transverse and longitudinal segmentation, needed to mitigate pileup effects to select events with a hard scatter process at L1-Trigger and to identify the associated vertex and particles
- precise timing capability: further mitigation of pileup effects

See talk from Dave Barney TWEPP18 tuesday

<u> 2000</u>C

Development history

- Jan 16 : SKIROC2_CMS [TWEPP 2016]
 - SiGe 350 nm 7x9 mm²
 - Dedicated to test beam and analog architecture (TOT)
- May 16 : 1st test vehicle: **TV1**
 - CMOS 130 nm 2x1 mm²
 - Dedicated to preamplifier studies
- Dec 16 : 2nd test vehicle: **TV2** [TWEPP 2017]
 - CMOS 130 nm 4x2 mm²
 - Dedicated to technical proposal analog channel study
- July 17 : HGCROCv1 [TWEPP 2018]
 - CMOS 130 nm 5x7 mm²
 - all analog and mixed blocks; large part of digital blocks
- Dec 18 : HGCROCDV1
 - CMOS 130 nm 15x6 mm²
 - Final size, packaging and I/Os

HGROCv1 features:

- 32 channels
- Dual polarity
- TOT with 2 variants:
 - Low power @ Imperial
 - DLL @ OMEGA (CERN based)
- TOA (CEA)
- 11-bit SAR ADC (OMEGA)
- Simplified Trigger path
 - Only sum by 4
 - No 0-suppress (4+4 log)
- SC with triple
- digital block with simplified architecture
- Bandgap from CERN [S. Michelis]
- PLL from CEA-IRFU
- 10b DAC from TV2

Analog channel

- Preamplifier gain adjustable on 4bit
- Simple CRRC shaper (assumed digital filtering)
- Decay time given by R_{f_pa} (25K or 100 k)
- New TOT architecture
 - Both polarities, Gain adjustable by slow control
- New TOA fast discriminator
- Local 5bit DAC to adjust the Vrefs and the thresholds
- Local input current DAC to compensate the leakage
- Internal calibration circuit
 - Low range up to 600 fC
 - High range up to 10 pC

Power dissipation @ 1,5V supply

- Vdda (preamp): 1,6mA
- Vdd (tot): 160µA
- Vdd(shaper, toa): 1,1mA

Mixed-signal circuits

- ADC SAR 11bit 40 MHz
 - Inspired from Krakow design, 11 bit
- 2 TDCs for TOT
 - IC design, 50ps/200ns, based on a ring oscillator
 - OMEGA design, 50ps/400ns, based on a global DLL running at 640MHz
- TDC for TOA
 - CEA-IRFU design
 - 10/11 bit
- PLL
 - CEA-IRFU design
 - 40MHz input clock
 - 1,28GHz running frequency

Serializer and Elink for trigger path

- □ The chip integrates 2 elink transmitters to handle the 64 bits from the trigger/
 - □ 4 channels are encoded into 8 bits (with 4+4 encoding)
 - \Box 2 variants (fully digital or mixed \rightarrow way the last mux is done)
 - Possibility to readout a known frame (set by SC)
 - Default is 1,28 Gb/s (640 Mb/s possible)
- □ Main specifications:
 - Data rate 1,28 Gb/s (internally 640M DDR)
 - □ Compatible with LpGBT protocol
 - □ Programmable Pre-emphasis (based on Paulo Moreira scheme)
 - □ Synchronization pattern on request (in place of trigger data)

mega

Specification description	Value				
Vcm (common voltage)	0,6 V				
Vdiff (differential voltage)	100 to 200 mV				
Pre-emphasis current	0,5 to 4 mA				
Termination load	100 Ω				

CdLT HGCROCV1 TWEPP, 2018

Test setup : PCB issues

- Many issues during the dicing, cabling and bonding
- 3 boards over 5 are partially usable
- More boards redone and bonded at CERN & FNAL
- Tests done at LLR, CEA-IRFU, Imperial & Omega

Preamp noise measurements (T=300K)

- Early noise measurements too high : simulation below theory and excessive noise
 - Simulations by Jan Kaplon [CERN] 3000/0.26 @ Id=1 mA
 - Theory predicts in weak inversion : gm = 24 mA/V en = 0.59 nV/ \sqrt{Hz}
 - Simulations now use old Spice 2 model in strong inversion en = 0.68 nV/ $\sqrt{H_{z}}$
- Excessive noise measured at large current : bulk noise

Noise density 3000/0.25

• New transistor layout comes close to theory (~ 2 Ω difference)

 TSMC 130n
 IBM 130n
 TSMC 65n

 0.35 nV/√Hz
 0.67 nV/√Hz
 0.75 nV/√Hz

Preamp ENC measurements (T=300K)

- ENC vs detector capacitance. Spec : ENC < 2500 e- @ Cd=50 pF
- Quadratic fit of ENC² gives e_n and C_PA
 - $ENC^{2}(Cd) ENC^{2}(0) = 3^{E}4 e_{n}^{2}/tp (Cd^{2} + 2Cd^{*}Cpa) = \alpha Cd^{2} + \beta Cd => e_{n} = sqrt \alpha tp/3^{E}4; Cpa = \beta/2^{\alpha}$
 - Here e_n = 0.79 nV/ C_pa = 12.5 pF in measurement and 0.75 nV 11 pF in simulation
 - Preamp contributes ~75% to total noise

ENC HGCROC1 Rf=25k Cf=0.4p

 $ENC^{2}(Cd)-ENC^{2}(0)$

Preamp timing measurements

- TOA discriminator output (scope measurement, no TDC)
- TOA Time walk and jitter
 - TW in good agreement with simulations (~8 ns risetime @Cd=50 pF)
 - Jitter larger than simulation ~ 5-7 ns/Q(fC) compared to 3 ns/Q(fC)

nega

TOT (analog) measurement

- TOT discriminator output (scope measurement, no TDC)
 - Slope tunable ~16 ns/pC. Full range < 200 ns = 8 BC
 - Noise ~50 ps corresponds to ~3 fC
 - Stub on PCB impedes shortest TOT measurements

Preamp linearity measurements

- The preamplifier works as expected: linearity and amplitude similar to the simulations
- Amplitude measured with TOT discriminator

Waveform scan with the ADC

- Strong non-linearity on probe measurement !
- But ADC measurement ~OK

Inverted shaper output

Omega

- Two issues appear when the signal sits in the upper voltage range
 - The signal is too slow
 - The amplitude is lower than expected
 - The behavior looks like a RC filter applied to the shaper output but with a pole depending on the voltage level
 - ➔ Probe switches made of HVT MOS (blue) (In TV2, switches made of normal Vt in orange)

ADC characterization

- ADC linearity still under investigation but INL/DNL appear too large
 - Poor extraction of parasitics in 614 C-2C DAC

=> Use Krakow's ADC in next chip : silicon proven

- Pedestal variation with sensor capacitance
 - A good indicator of digital noise sampled synchronously
 - Noise gain goes as Cd/Cf ~100

nega

- 640 MHz counter for coarse time and 32-taps DLL for fine time : LSB = 40 ps
- Good noise (~ 30 ps), INL, DNL OK
- But large power dissipation (3 mW/ch)

- Minimum bin size < 35 ps
- All channels within +/- 2.5%
- Power < 500 μ W
- Good results, but open loop configuration : needs regular calibration

INL

Jitter

DE LA RECHERCHE À L'INDUSTRI

Timing and resolution :

3 stages TDC (LSB 25 or 12 ps)

TDC resolution is increased by a counter

The 2 most significant bits of the TDC are now obtained by a **counter** operating at the CTDC frequency who is also a multiple of the 40 MHz bunch clock.

The common 8-bit counter \rightarrow 2 bits for LSB and 6 other bits for bunch marking.

A common PLL in phase with the external bunch clock (40 MHz)

TOA TDC PERFORMANCES

TDC channels and PLL are fully working as expected

About the TDC : (10-11 bits)

- → 25 ns total range is covered
- Conversion time < 25 ns →
- → Internal servo-controlled DLL : commun master DLL for a continuous
- self-calibration is working (no calibration phase needed)
 → Power consumption : 1.5 mW for the master DLL , 2.1 mW/channel hit (0 if no hit) Area : 250 µm x 160 µm
- \Rightarrow Performance under study but results in asynchronous mode =>
 - \Rightarrow DNL <+/- 1LSB, INL ~10LSB peak-to-peak (TBC with more statistics)
 - \Rightarrow TDR => ~40 ps RMS for each channel

Next steps :

- Need to increase the statistics => test bench improvement
- Systematic test of all channels
- Test if offline correction of INL is efficient. Q: Is it possible in the CMS context ? ➔
- Tests with synchronous pulses => test bench modification →
- Upgrade the design

PLL and E-links

- PLL works well with jitter < 20 ps
- Trigger path running at 1,28 Gb/s
 - Work going on at LLR/Split to reconstruct trigger data
 - Good eye opening
 - But asymetry in final multiplexer to be fixed

CdLT HGCROCV1 TWEPP, 2018

- Full size 72 channels final pinout
- Final interfaces : I²C and Fast commands
- Final analog/mixed blocks
 - Faster preamp for better timing
 - Fourth order Sallen-Key shaper for fast return to baseline
 - Krakow's ADC
 - CEA TDC for both TOA and TOT
- New DRAM from CERN
- New C4 packaging
 - Strong constraints on the layout
 - Better power supply distribution
- Submission in MLM dec 2018

nega

PA+Sh+ADC = 1500*120 µm

- HGCROC is making good progress but a lot remains to be done !
 - Testbench measurements, irradiation measurements, testbeam measurements...
 - Next version HGCROCDV1 (dec 18) will provide full scale prototype for sytem studies

- Thanks for your attention
- HGCROC designers : AGH, CEA-IRFU, CERN, Imperial, OMEGA
 - G. Bombardi, J. Borg, F. Bouyjou, E. Delagnes, F. Dulucq, M. El Berni, O. Gevin, F. Guilloux,
 M. Idzik, C. de La Taille, A. Marchioro, J. Moron, L. Raux, D. Thienpont, T. Vergine
- HGCROC measurements : *id.* + LLR & FESB Split
 - *id.* + PA Bausson, L. Bernardi, S. Callier, D. Coko, P. Dinaucourt, Y. Geerebaert, ,A. Lobanov, I. Mandjavidze, I. Puljak, O. Sahin, F. Thiant, A. Zabi

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654168

Preamp gain / polarity

- Go for 3 gains with saturation at 80-160-320 fC (~100 MIP)
 - 2 bits to select Rf and Cf, keeping RfCf = 10 ns
- Keep dual polarity (for 300 um)

thickness	MIP		Noise		LSB	ADC range	ADC range	MIP	Noise
	e-	fC	e-	fC	fC	fC	MIP	ch above ped	LSB
120um	9000	1.4	2000	0.3	0.4	320	222	3.6	0.8
120um	9000	1.4	2000	0.3	0.2	160	111	7.2	1.6
120 irrad (worse 3000 fb-1)	6000	1.0	2600	0.4	0.1	80	83	9.6	4.2
200 um	15000	2.4	2500	0.4	0.4	320	133	6.0	1.0
200 um	15000	2.4	2500	0.4	0.2	160	67	12.0	2.0
200 irrad (worse)	6000	1.0	3000	0.5	0.1	80	83	9.6	4.8
300 um	20000	3.2	2000	0.3	0.4	320	100	8.0	0.8
300 irrad (worse 3000fb-1)	10000	1.6	2200	0.4	0.2	160	100	8.0	1.8
300 irrad (worse 3000 fb-1)	10000	1.6	2200	0.4	0.1	80	50	16.0	3.5

ega

Shaper

- Selection of 4th order Sallen-Key
 - Similar performance with pole/zero
 - Pole zero more complicated with variable preamp gain
 - 3 stages needed to drive ADC properly

mega

- Fast discriminator at preamp output
- Expected performance : j = 3,5 ns/Q(fC) at Cd=50 pF
- Time walk : 8 ns

Two approaches to improve jitter for HGCROC-DV1 :

- Increase current in preamp to improve speed and noise
 - 1 mW extra power => lower noise
 - 4 ns rise time
 - $S(1 fC)/N \sim 1.8$
 - Simulated jitter j = 2.3 ns/Q
- New innovative fast branch in preamp (time output)
 - 1 ns rise time output
 - 1 mW+ 300 uW extra power
 - S(1 fC)/N ~ 0.5 with 50pF detector capacitance
 - Simulated jitter : j = 1.6 ns/Q

Jitter: new fast output vs. new charge output

