VULCAN READOUT CHIP
Test Strategy for Low Failure Rates and Status of a Highly Integrated Readout Chip for PMTs in JUNO

2018-09-18 | A. ZAMBANINI
Introduction to JUNO

Concept of the **Vulcan** Readout Chip

Lab Verification Status of Vulcan

Test Strategy for Low Failure Rates

Summary and Outlook
THE JUNO EXPERIMENT

- **Jiangmen Underground Neutrino Observatory**
 - Jiangmen, China (near Hong Kong/Macao)
 - Planned start: 2022, duration of **6 years**
 - 2 nuclear reactors, baseline ~53 km

- **Multi-purpose neutrino detector**
 - Main goal: determine neutrino mass hierarchy
 - Energy resolution: 3% at 1 MeV
 - Central detector:
 - 20 000 t liquid scintillator (LAB)
 - **18 000 20” PMTs; ~36 000 3” PMTs**
 - Detector **submerged** in water to support weight
THE VULCAN CHIP DEVELOPED FOR JUNO

~18 000 large PMTs as intelligent PMTs
- Readout electronics submerged with PMT
- Lower bandwidth on the cable
- GCU (global control unit) as central control with ADU (analog to digital unit)

Highly linear, fully integrated circuit – Vulcan
- Sampling ADC with approx. 80 dB linearity
- No external components required
- On-chip clock generation from ref. clock

Precise signal reconstruction
- No analog delay line (reducing noise & distortion)
- Control loop to suppress DC variations
- Optional overshoot compensation

Key Parameter of Vulcan

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>65 nm CMOS</td>
</tr>
<tr>
<td>Active Area</td>
<td>22 mm²</td>
</tr>
<tr>
<td>Power</td>
<td>~ 1.2 W</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>< 10 Ohm</td>
</tr>
<tr>
<td>Input Bandwidth</td>
<td>500 MHz</td>
</tr>
<tr>
<td>Sampling Rate</td>
<td>1 GSample/s</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>80 dB</td>
</tr>
<tr>
<td>ADC Resolution</td>
<td>3× 8 bit</td>
</tr>
<tr>
<td>High Gain</td>
<td>0.06 p.e./bit</td>
</tr>
<tr>
<td>Medium Gain</td>
<td>0.4 p.e./bit</td>
</tr>
<tr>
<td>Low Gain</td>
<td>8 p.e./bit</td>
</tr>
</tbody>
</table>

Vulcan: Son of Juno in ancient Greek mythology
Signal Modes – Small & Medium Signals

First two signal chains
- Parallel TIA input
- Programmable gains
- Combined input resistance of ~ 5 Ω
Signal Modes – Large Signals

Third signal chain
- Current > 20 mA
- TIA input saturates, ESD diodes open
- Voltage over diodes measured

![Diagram of signal modes and ADCs](image-url)
Vulcan Design Status

- Complete design (22 mm²) with
 - 3x receiver chain (TIA, 8 bit ADC)
 - 4 GHz on-chip PLL
 - Digital part with ~ 7 million transistors
 - 20 LVDS outputs

- Second engineering sample: **tapeout in Q3/2017**
 - Return in Q4/2017, lab verification since then
VULCAN LABORATORY SETUP
Verification Board Concept

Verification Board
- Main board for IC verification
- Best RF/Impedance performance
- Optimized for verification measurements

Socket Board
- Non-destructive measurement
- Limited performance measurements
- Functional tests

PMT Board
- For direct usage with PMT
- Protection circuit
- All 3 ADCs connected

Main Board
- Logic analyser connection
- Power supply connection
- JTAG interface
- DC measurements
- Samtec board to board connectors

System Board
- All 3 ADCs connected
- Protection circuit
- Reference design for system implementation
VERIFICATION BOARD IN ACTION

Main Board

Daughter Board
ADC CHARACTERIZATION

- Precise current source as input to Vulcan
- Equivalent DC input voltage
 - Measure ADC value
 - Mean, min, max
- Result:
 - Linear over all 4 sub-ADCs
 - Little spread per voltage
ADC Characterization

- Signal generator as input to Vulcan
- Sine wave with $f = 100\, \text{kHz}$
 - Also used for SNR & ENOB calculation (next slide)
- Output shows proper digitization in the full range
Signal to Noise Measurement

- **SNR w/o distortion**
 \[\text{SNR} = 45.92 \, \text{dB} \]

- **ENOB w/o distortion**
 \[\text{ENOB} = 7.48 \]
 (req.: 7.33 ENOB)

\[\text{ENOB} = \frac{\text{SNR} - 1.76 + 20 \times \log_{10} \left(\frac{\text{Full_scale}}{\text{Used_scale}} \right)}{6.02} \]

SNR: signal to noise ratio
ENOB: effective number of bits
SINGLE PULSE MEASUREMENT

- Signal generator producing short rectangular pulse
 - Pulse shape different due to limited bandwidth
 - Amplitude and length equiv. to one photoelectron

Vulcan can detect realistic pulses
Reliability of Integrated Circuits

- Generally: product failures in different phases:
 - Infant mortality due to manufacturing defects
 - Normal life (covered by e.m. aware design)
 - Wear-out (covered by e.m. aware design)

- Manufacturing defects due to process variations
 - Varying between wafers and with position on wafer
 - Strong defects: not operational transistors or wires
 \[\rightarrow\] immediate impact on functionality
 - Weak defects: weakened wire that can wear out with time
 \[\rightarrow\] fails with stress on circuit

- Goal: filter out all unreliable ICs so that only stable ones survive
 - Foundry: test devices on wafer next to each IC (PCM); rigid visual inspection
Electromigration-Aware Design

- Material transport by gradual movement due to electron collisions
 - Dependent on current density in the conductor
 - Degradation of the metal over time
 - Leads to connection faults in the design

- Prevent by design methods
 - Use wider/multiple conducting wires
 - Use multiple vias instead of single vias

- Perform electromigration studies to estimate degradation prior tapeout
 - Based on IR drop simulation
 - Detailed current consumption analysis
 - Critical areas get easily visible
Structural Scan Test

- Digital part composed of combinatorial and sequential logic
 - Goal: test the *connectivity and functionality of digital gates*
 - Method: include scan chain(s) to determine faulty gates/connections

- Flip flops (FFs) exchanged by **scan FF**
 - Two modes of operation: reg. & scan
 - 1) Scan data loaded in scan chain; representing certain logic state
 - 2) Data is processed for 1 clock cycle
 - 3) Data shifted out to scan output

- **Scan patterns generated** by ATPG tool

- Detects single stuck-at-fault gates and delay faults
IDDQ TESTING

- Testing supply current (I_{DD}) in the quiescent state ($\rightarrow I_{DDQ}$)
 - Or: measuring the leakage current without digital activity
 - CMOS logic circuit draws current only during switching phase
 - Many production faults increase the current by orders of magnitude

- Easy and fast test
 - Filter devices with $I_{DDQ} < I_{DDQ_thr}$ (> 95% coverage)
Voltage Stress Testing

- Induce artificial stress to extract weak devices

- **Very low voltage (VLV) test**
 - Operation with lower than normal voltage
 - Identify resistive shorts and thin oxide layers
 - Performance of weak devices affected more

- **Short voltage elevation (SHOVE) test**
 - Short bursts with higher than normal voltage (10% - 20% increase)
 - Brief moments of higher current
 - Critical areas (thin oxide regions) will wear out fast
 - IDDQ test results are affected in weak devices (> 95% coverage)
Performance Testing

- Quantify the overall performance with **key parameters**
 - PLL frequency and oscillator voltage
 - DAC: INL / DNL
 - ADC: Offset and gain errors
 - … and more

- Pick **best samples**, targeted ratio: 1 out of 3
 - Samples surviving all tests are strongest
 - Suppressing infant failures
 - Confirmed with manufacturer
 - Similar procedure as in automotive industry for reliability assurance

Effectively, device faults are completely suppressed!
SUMMARY AND OUTLOOK

- **Vulcan 2nd engineering sample produced**
 - Readout solution developed for PMTs in JUNO
 - 3 receivers with programmable gain (1 GSample/s, 7.48 ENOB)
 - Ongoing verification in the lab

- **Verification concept for low failure rates**
 - Production test developed based on industry standards
 - Extensive selection procedure ensures high reliability
 → **No Vulcan faults expected** for JUNO runtime

- Next step: finish lab verification

- No further iteration planned at this moment
SUMMARY AND OUTLOOK

- **Vulcan 2nd engineering sample produced**
 - Readout solution developed for PMTs in JUNO
 - 3 receivers with programmable gain (1 GSample/s, 7.48 ENOB)
 - Ongoing verification in the lab

- **Verification concept for low failure rates**
 - Production test developed based on industry standards
 - Extensive selection procedure ensures high reliability
 → **No Vulcan faults expected** for JUNO runtime

- **Next step: finish lab verification**
- **No further iteration planned at this moment**
EXTERNAL SOURCES

• Slides 3-4: Conceptual Design Report, JUNO Collaboration (v2, 2015) & JUNO Collaboration Default Slides
 https://arxiv.org/abs/1508.07166

• Slides 8-14: Measurement results mainly achieved by Christian Roth

• Slide 15: Bathtub curve, Wikipedia (version from 02.08.2009)
 https://commons.wikimedia.org/wiki/File:Bathtub_curve.svg

 http://jes.ecsd.org/content/152/1/G45.full (DOI: 10.1149/1.1828419)

• Slide 17: Scan chain visualization, AnySilicon website (accessed Feb. 2017)
 https://anysilicon.com/overview-and-dynamics-of-scan-testing/
3 types of neutrinos with squared masses m_1^2, m_2^2, and m_3^2
Absolute masses of neutrinos unknown
Mass differences are known: $\Delta m_{12}^2 = m_2^2 - m_1^2$ and $|\Delta m_{13}^2| = |m_3^2 - m_1^2|$
$|\Delta m_{13}^2|$, no sign known \rightarrow 2 possible mass hierarchies (MH)
Measurement of neutrino mass hierarchy:
\rightarrow confirm normal hierarchy (NH) or inverted hierarchy (IH)
PHYSICS MOTIVATION

Measurement of Neutrino Mass Hierarchy

- Phase of oscillation different for NH and IH
- Discrimination of NH and IH by $\Delta \chi^2_{\nu_{MH}}$ by measurement:
 - $\Delta \chi^2_{\nu_{MH}}$ improves i.a. with energy resolution (design: 3%/sqrt(E/MeV))
 - → good energy and waveform reconstruction needed
OVERSHOOT COMPENSATION

- Signal distortion by AC coupling
 - Inter-symbol interferences
 - Reduced signal to noise ratio

- Optional compensation in Vulcan
 - Additional coupling cap. at the bias resistor
 - Sensing voltage over bias resistor (R_{bias})
 - Compensation current generated by a copy of the bias resistor (R_{bias2})
ADC PERFORMANCE REQUIREMENTS

• Noise requirements
 – From Conceptual Design Report:
 “Noise level should be below 0.1 p.e. for single photoelectron detection”
 – Vulcan: 8 bit for first range (0-16 p.e.)

<table>
<thead>
<tr>
<th>ENOB</th>
<th>Range [p.e.]</th>
<th>Resolution [1/p.e.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>16</td>
<td>0.0625</td>
</tr>
<tr>
<td>7.33</td>
<td>16</td>
<td>0.1</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>0.125</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>0.109</td>
</tr>
</tbody>
</table>
ADC Performance Requirements

- **Noise requirements**
 - From Conceptual Design Report:
 - Noise level should be below 0.1 p.e. for single photoelectron detection
 - Vulcan: 8 bit for first range (0-16 p.e.)

- **Time requirements**
 - From Conceptual Design Report:
 - Waveform sampling should be available over the whole energy range with a sampling rate of 1 GS/s.
 - Vulcan: 500 MHz sampling, both edges

- **Configurable: sampling or integrating ADC**

### ENOB	Range [p.e.]	Resolution [1/p.e.]
8 | 16 | 0.0625
7.33 | 16 | 0.1
7 | 16 | 0.125
7 | 14 | 0.109
VERIFICATION BOARD CONCEPT

Main Board

Verification Board or Socket Board or PMT Board or System Board
VERIFICATION BOARD

Samtec Supply Connector

Samtec LVDS Digital Connector
Socket Board Setup

- Yamaichi Socket for functional testing
VERIFICATION RESULTS OF VULCAN ES2

- LVDS Data Lines
TRANSIMPEDANCE AMPLIFIER INPUT IMPEDANCE
Full Range ADC DNL (low Gain)
Full Range ADC INL (low Gain)

Vulcan 2.0 RX1 ADC + TIA INL (Integral nonlinearity) Measurement (TIA_{Input} to ADC_{Output})
STRESS TESTING FOR LAYOUT VERIFICATION

- Classical temperature stress test (*burn-in*)
 - High temperature during operation favors electromigration
 - Faster aging, but still long measurement time until first failures (few years)
 → not feasible for JUNO schedule

- Alternative approach: *burn-in light*
 - A few samples O(100) operated in high temperature
 - Samples won’t be used in JUNO
 - Goal: verify layout regarding electromigration
 - Also possible: verify the selection procedure
Insert additional grid layers
IR DROP ANALYSIS – CURRENT LIMITS