FELIX: the New Detector Readout System for the ATLAS Experiment

Gokhan UNEL

UC Irvine

On behalf of the ATLAS TDAQ Collaboration

TWEPP 2018 Topical Workshop on Electronics for Particle Physics
Outline

The ATLAS Detector

- **ATLAS DAQ**
 - Today
 - Upgrades

- **FELIX**
 - Hardware
 - Firmware
 - Software
 - Integration and tests

- **Utilization**
 - ATLAS Experiment
 - Others

challenge: readout ~100 million electronic channels and sift through data as fast as possible
TODAY: 2MB events, ~50GB/s network bandwidth needed, 1.5GB/s recording data taking finishes by the end of 2018.
Phase-I Upgrade

Data taking 2021-2023: same requirements as before but will reduce custom components
2MB events, ~50GB/s network bandwidth needed, 1.5GB/s recording

GBT links* or FULL mode links

PCs

25 - 100 Gb Ethernet

Custom electronic components including FELIX cards

GBT: GigaBit Transceiver with Versatile Link

*COTS (Commodity, Off-the-shelf)
Phase-II Upgrade

data taking 2026-2030: severe requirements, further reduce custom components
5MB events, ~5TB/s network bandwidth needed, ~50GB/s recording

GBT, LpGBT* or FULL mode links

COTS network technology

Custom electronic components including FELIX cards

PCs (COTS)

*LpGBT: Low power GBT
FELIX functionality

- Scalable architecture
- Routing of event data, detector control, configuration, calibration, monitoring
- Connect the ATLAS detector Front-Ends to the DAQ system, for both the to and from FE directions
- Configurable E-links in GBT Mode
- Detector independent
- TTC (Timing, Trigger and Control) distribution integrated

* E-link: variable-width logical link on top of the GBT protocol. Can be used to logically separate different streams on a single physical link.
FELIX hardware design

PCle card with FPGA chip + Host PC + NIC

TTC (Time, Trigger and Control): LHC protocol used to distribute global clock (40.08MHz) and Level 1 trigger information
FELIX hardware components

mini-felix for small systems & prototyping

- **VC-709 from Xilinx**
 - Virtex7 X690T FPGA
 - **FLX-709** or miniFelix
 - 4 optical links (SFP+)
 - PCIe Gen3 x8

- **TTCfx (v3) mezzanine card**
 - TTC input
 - ADN2814 for TTC clock-data recovery
 - Si5345 jitter cleaner

- **SuperMicro X10SRA-F used for prototyping**
 - Broadwell CPU, e.g. E5-1650V4, 3.6GHz
 - PCIe Gen3 slots

- **Mellanox ConnectX-3**
 - 2x FDR/QDR Infiniband
 - 2x 10/40 GbE
FELIX hardware components

Final Felix system

BNL-712 (or FLX-712) from BNL
- Xilinx Kintex Ultrascale XCKU115
- 48 optical links (MiniPODs)
- TTC input ADN2814
- Si5345 jitter cleaner
- PCIe Gen3 x16 (2x8 with bridge)

- MB not yet finalized
 - Intel Xeon E5-1660 V4
 - >= two x16 PCIe 3.0
 - >= one x8 PCIe 3.0
 - >=250GB SSD

- Timing mezzanine card
 - Supports TTC, TTC-PON, White Rabbit
 - TTC configuration is for phase-I

- Mellanox ConnectX-5
 - 2x 100GbE
Available up to 24 GBT or FULL mode links
Fixed latency transmission to FE using LHC clock
Maximum PCIe throughput to the host PC (2x64 Gb/s)
FELIX modes of operation

GBT mode
- Line rate: 4.8 Gb/s
- Up to 24 bidirectional optical links
- 3.2 Gb/s payload with FEC or 4.48 Gb/s payload
- Routes TTC information
- Optical link divided in E-Links
- Communicate with GBTx & GBT-SCA

FULL mode
- Line rate: 9.6 Gb/s
- Up to 12 bidirectional optical links
- OR up to 24 if not fully used
- Routes TTC information
- 7.68 Gb/s payload:
 - 8B/10B encoding
 - CRC
 - BUSY-ON and OFF
 - 4.8 Gb/s GBT links to FE

Configuration registers: control and monitor.
- Data buffered in the FPGA per E-link or per FULL mode link and transferred under DMA control
- Fixed block size of 1 kB by design choice
- The blocks are transferred into a contiguous area, functioning as a circular buffer, in the main memory of the PC.
- The DMA runs continuously, thereby eliminating DMA setup overheads and achieving high throughput (about 12 GB/s for the 16-lane interface of the FLX-712).
- Event fragments or other types of data arriving via the FE links are referred to as “chunks” and can have an arbitrary size.
- 1 kB blocks of E-links or FULL mode links are multiplexed into a single stream.

- Block header: (32 bits)
 - E-link ID
 - Block sequence
 - Start of block symbol
- Fragment trailer (16 bits)
 - Fragment type
 - First, last, both, middle, null
 - Flags
 - Error, truncation, timeout, CRC error
 - Fragment length
 - 10 bits
• SLC6 and CC7 are the two supported built platforms.

• Evaluating control software candidates for FELIX Apps: manage logs, keep the core alive,…

• Classification
 • Drivers & Low level software: ftools, flx-tools etc..
 • FLX Core allows monitoring via web interface
 • NetIO allow shipping of data to the SWROD ~ Read Out System

http://supervisord.org
configuration & monitoring

FELIX configuration
Graphical User Interface

FELIX core application
monitoring web server
NetIO

- The generic message-based networking library “NetIO” has been developed for FELIX to communicate with swROD
 - Provides **low-latency** or **high-throughput** patterns
 - **Publish/subscribe** messaging system
 - Performance of message size greater than 1kB is limited by network bandwidth
A test setup at CERN allows testing of major felix functionalities & speed receiving trigger & data from FE pushing data to swrod
Busy mechanism + (data to FE electronics soon)
Automated tests for different hardware, firmware and software versions
Felix Performance

The L1Calo case is the most demanding workload for FELIX in FULL Mode.
~105-110 kHz per channel is achieved

Performance in FULL Mode (package size: 4800 Byte)

NSW is most demanding for GBT mode in Run 3
About 120 kHz rate can be achieved in the worst-case NSW GBT-mode configuration

Currently studying RDMA (Remote Direct Memory Access) instead of TCP/IP: it completely eliminates the copy of the data into the system TCP buffer.
we expect better performance in NetIO.
firmware & software tests

• GIT Continuous Integration

• Firmware tests

• Software tests
XON and XOFF signals used to throttle the transmission of data from the front-end to FELIX to prevent buffer overflow.

BUSY assertion expresses an emergency situation with impending buffer overflow, resulting in all ATLAS data taking being paused, and is not intended (and should not be used) for normal flow control.

The BUSY signal will be de-asserted once there is no BUSY condition satisfied. Possible sources of BUSY include BUSY-ON or BUSY-OFF commands received from front-ends via input links and the internal state of the firmware and software.

BUSY assertion has been tested in the validation test setup.
Utilization in ATLAS

- Liquid Argon Calorimeter
 - LTDB (LAr Trigger Digitizer Board): integration testing ongoing with 40+ channels to monitor the FE and operate the TTC distribution
 - LDPB (LAr Digital Processing Blade): integration testing ongoing with MiniFELIX in FULL mode

- Level-1 calorimeter trigger
 - gFEX (Global Feature Extractor): connection established for 12 FULL mode links, long term stability ongoing
 - ROD, Hub for eFEX (Electron Feature Extractor) and jFEX (Jet Feature Extractor): users in the process of setting up their test facilities
 - TREX (Tile Rear Extension) modules: users in the process of setting up their test facilities

- Muon spectrometer
 - New Small Wheels (NSW): sTGC (Small-strip Thin Gap Chamber) and MicroMegas (Micro Mesh Gaseous Structure) detector for muon tracking: integration of the FELIX system in the NSW Vertical Slice including the complete DCS (Detector Control System) chain, now targeting performance and long term stability
 - BIS78 (Barrel Inner Small MDT (sector 7/8)): users in the process of setting up their test facilities with FELIX

- Tile Calorimeter
 - Test system for Phase-II readout
 - Initial communication established with the Tile PPr board in GBT mode
 - Stepping toward FULL mode communication

- Pixel sensors readout (for the Control and Readout ITk Inner Tracker)
 - Test system for Phase-II ITk HV-CMOS pixel sensor R&D and Pixel demonstrator readout
 - A FELIX system has been used to readout a telescope during recent HV-CMOS beam tests at CERN
 - A vertical slice test stand for Pixel demonstrator readout with FELIX has been set up at CERN
Utilization elsewhere

• Several experiments outside the ATLAS collaboration expressed interest in the FELIX system to control and readout their detectors
 • A number of them is actively evaluating FELIX as a possible read out solution

• The current most important group is the ProtoDUNE collaboration:
 • FELIX Emulator: software development ongoing using the FULL mode complete chain kit provided by the FELIX team (FULL Mode Generator + FULL Mode FELIX)
 • WIB (Warm Interface Board): is being correctly read out by a FELIX system and long term stability testing is now being target
Summary & Outlook

• FELIX is a router between custom serial links and a commodity network, which separates data transport from data processing.
 • In LHC Run-3 (2021-2023) FELIX will be used by some detectors and trigger systems to interface the data acquisition, detector TTC systems.
 • In LHC Run-4 this is planned for all ATLAS detectors.

• Status:
 • FELIX GBT Mode: the firmware and the software reached a development status sufficient to be distributed to ATLAS Sub-Detectors Front End developers.
 • FELIX FULL Mode reached a development status sufficient to be distributed to the Front End developers.
 • Supported hardware platforms for both modes: FLX-709 (Xilinx VC-709) and FLX-712

• Ongoing efforts
 • Increase overall system reliability.
 • System testing and integration: firmware to control of GBTx ASIC via its IC port, GBT-SCA ASIC via EC port.
 • A C++ API and an OPC server and client are in progress to fully support the GBT-SCA ASIC.

• Procurement is ongoing, installation planned for 2019
Thank you for your attention...
Integration workshop setup
FELIX firmware: FULL mode

From-Host data encoding, parsing and transmission.

DMA write
DMA read

GBT - FPGA wrapper

From-Host path

to-Host path

x GBT_NUM

Housekeeping

GBT link data emulator

FM link data emulator

Central Router

To-Host data decoding, data boundaries detection, header and packet trailer attachment

Configuration registers: control and monitor.

External TTC board

Busy

Busy proc

TTC data fan-out

From-Host data encoding, parsing and transmission.

TTC fmc wrapper

TTC Decoder

Wupper core

DMA engine

Wupper PCIe engine

XILINX PCIe End Point

Interrupt controller

PCle Gen3 x8

optical connectors

x GBT_NUM

Busy

CLK&RST

mmcm

firmware clocks*

* Exact output frequency depends on the mmcm input. Outputs are phase aligned to an input clock.

Interrupt controller

Configuration registers: control and monitor.
FULL mode chain and clocking

- 9.6Gb/s Link tested with **32-bit PRBS31** generator and checker.
 - No error occurred for ~72 hours run. BER < 1E-15.
- Complete design tested with different FPGA based emulated data generators (gFEX, VC709, VC707)
 - No errors occurred for several TB of data transmitted
- Optional RX clock recovery for TX in emulator
- Clock recovery in FELIX, or local clock for internal emulator
Wupper: PCIe engine for FELIX

- PCIe Engine with DMA interface to the Xilinx Virtex-7 (Kintex Ultrascale) PCIe Gen3 Integrated Block for PCI Express
- Xilinx AXI (ARM AMBA) Stream Interface (UG761)
- MSI-X compatible interrupt controller
- Applications access the engine via simple FIFOs
- Register map for programmed I/O synchronized to a lower clock speed

- Developed for use in FELIX
- Published as Open Source (LGPL) on OpenCores
 http://opencores.org/project,virtex7_pcie_dma
- Core matured to maintenance only phase
- Positive feedback from the community