The End-of-Substructure (EoS) card for the Strip Tracker Upgrade of the ATLAS experiment

Chaowaroj (Max) Wanotayaroj

Chaowaroj (Max) Wanotayaroj on behalf of DESY EoS Team

Introduction **ATLAS ITk Upgrade**

- HL-LHC will be a very harsh environment for ATLAS inner tracker (ITk)
 - Peak luminosity ~ $7.5 \times 10^{34} cm^{-2}s^{-1}$ (200 collisions per bunch crossing) 593 mm
 - Lifetime integrated luminosity ~ 3000 fb-1
- New, upgraded silicon tracker
- New readout electronic needed
 - Faster
 - Less materials
- Two geometries
 - Stave for barrel
 - Petal for endcap
- End of Substructure (EoS) card
 - Sit on the "ear" of stave and petal
 - Act as the interface between on- and off-detector components
 - Handle data, command, and power delivery
 - Upstream: Up to 28 "Elinks" @ 640 Mbit/s
 - Downstream: Clock and control data stream for front-end ASIC
- Both Low (LV) and High (HV) Voltage delivery 20/09/2018 TWEPP 201BESY.

Chaowaroj (Max) Wanotayaroj

modules

For

hybrids

1400 mm

EoS Card

- Major radiation-hard components from CERN:
 - Low-power Gigabit Transceiver (lpGBT) ASIC
 - Bi-directional optical link (VL+)
 - DCDC convertor (BPOL12 and BPOL2.5)
- Multi-layer board using industry-standard PCB technology.

AMAC Control

E-Link SC

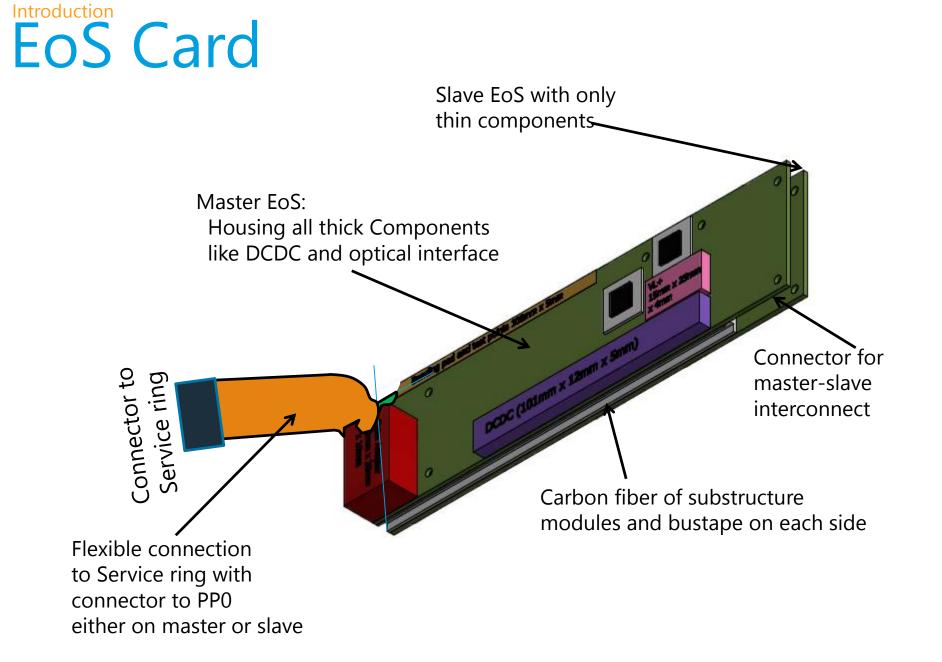
4 x TTC Bus

VL+

.....

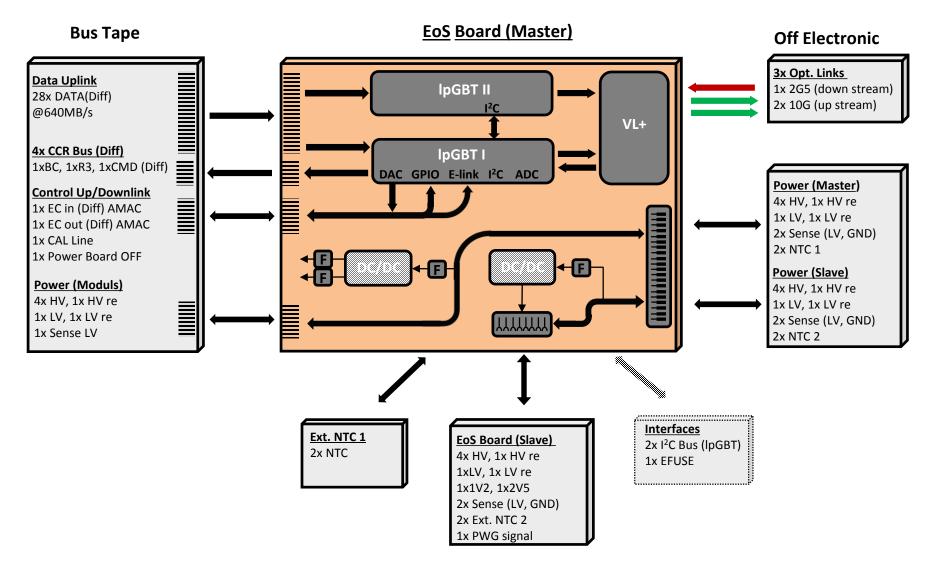
laste

2.5 V


Slave

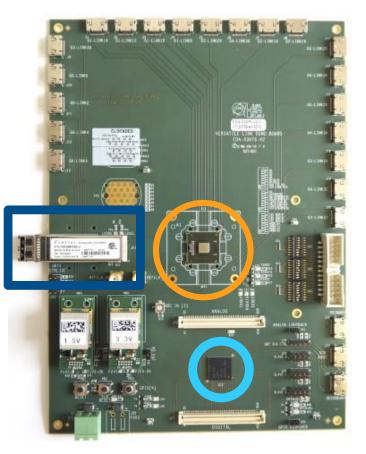
1.2 V

DC DC


- Nominal thickness 1.6 mm, maximum 1.8 mm
- Total height < 5 mm (constrain from detector design/assembly)
- Two variants called the "Master" and the "Slave"
 - Glued to the each side of the mechanical structure (see next slide)
 - Connected at one end
 - 1 or 2 lpGBT each and a VL+ each
- Master will house the think components
 - Fiber interface
 - DCDC converters
- Flex cable for common power and external monitor connector
 - In the slave for barrel, master for petal

Schematic

GBTx-based Prototype

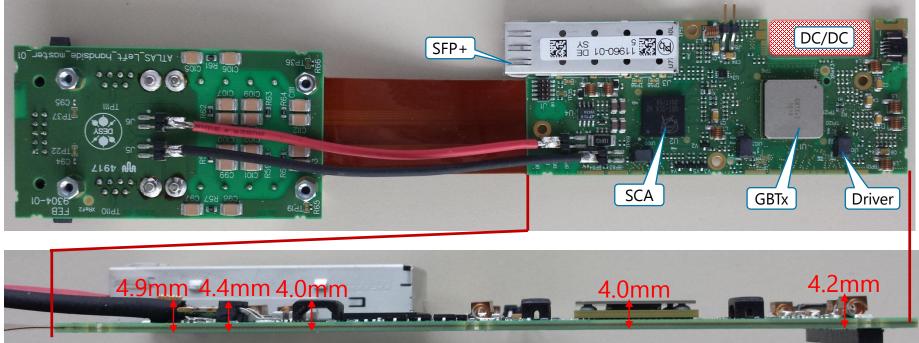

EoS Prototype

- The EoS will use IpGBT chip, but it is not yet available
- We built GBTx-based prototypes to learn about implementing the hardware and software
 - We won't learn everything since lpGBT is different
 - Unlike IpGBT, GBTx is accompanied by an ASIC decicated to slow control called GBT-SCA
 - Built both master and slave cards
- The laser component, VL+, is also not yet available
 - We use industry standard SFP+ for prototyping
 - The height of SFP+ is over the limit but can be ignored

Evolution of the Prototypes

VLDB

Test daughterboard



GBTx GBT-SCA SFP+

- We started from VLDB board, which is CERN reference design
 - Also hosted the GBT-SCA for slow control, whose functionalities will be integrated into IpGBT
 - VLDB is a fallback reference in case we run into a problem with our prototypes
- Next, we built a simple test daughterboard, hosting GBTx and SFP+
 - We no longer use it, but still make them for other teams to get started on the GBTx chip

Master Board

- So far, we built a total of 23 master boards
 - 3 of them are version 0
- We have 20 of the latest version 1
 - Current tallest component is at 4.9 mm, including the PCB
 - All I/O channel can run up to 320 Mbps

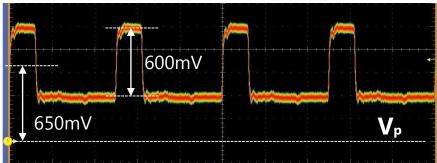
Slave Board

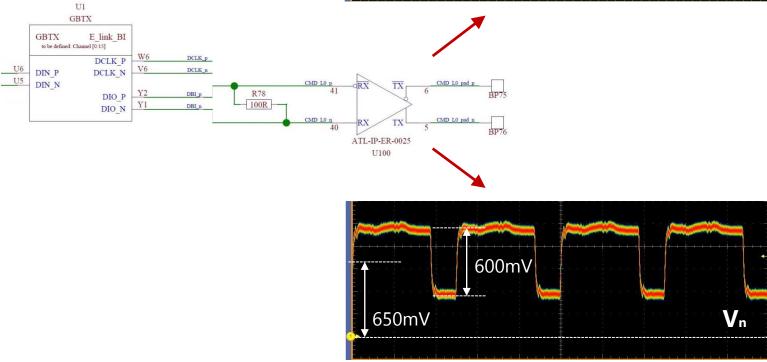
- For slave board, we built a total of 12 boards
- 2 are version 0
- We have 10 of the latest v.1

Things We Learned

The current (v.1's) prototypes have no outstanding issues, but we've learned quite a lot while building them

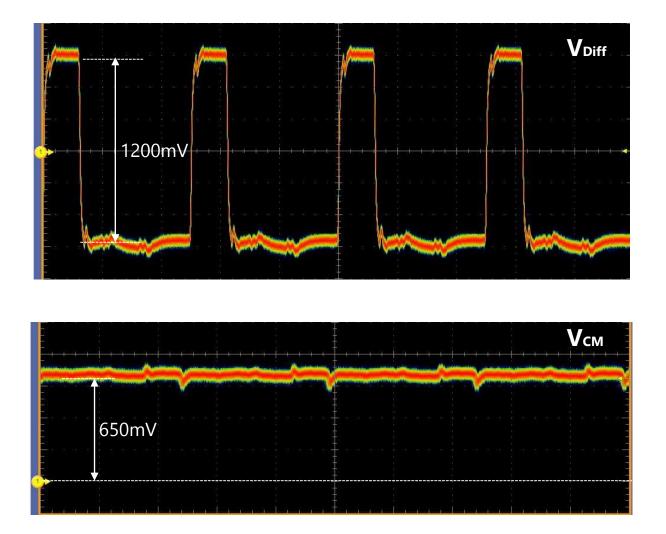
- Wrong pull-up for the SFP+
 - Passive (copper) cable is a good thing to check if optical one doesn't work
- Mistakes on connections between GBTx and SCA
- Wrong resistors
 - Stricker design rule will check and make sure these are correct in the future
- PCB manufacture can made bond pads with too small pad size, serious over-etching (!?)
 - We will perform visual inspection to catch this
- Elink channels have to be carefully selected
 - Some are not available at high speed mode


Functionality Test


We developed both firmware (FPGA) and software (PC) for testing the boards

- Isolation resistor HV lines
- Line resistor HV, LV, NTC
- Electrical strength, residual current HV lines @ 1.5kV for 60 sec
- Current on LV and 1V5
- Common mode voltage at output driver
- Fast control Signals (CCR) and AMAC down (V_{CM} , V_{DIFF} , I^2C)
- Test of all data input ports
- GBT-SCA:
 - Read SCA's ID
 - SCA's built-in I²C Bus
 - GPIO
 - ADC and DAC channel

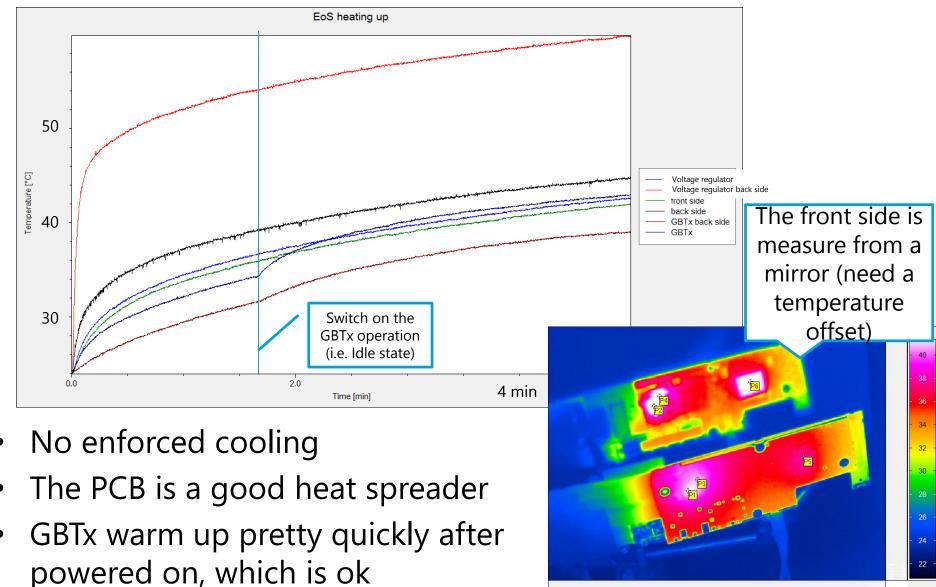
CMD Signal (E-Link)



• Sending "0001" @ 40 MHz (160 Mbps)

20/09/2018 TWEPP 201**BESY.**

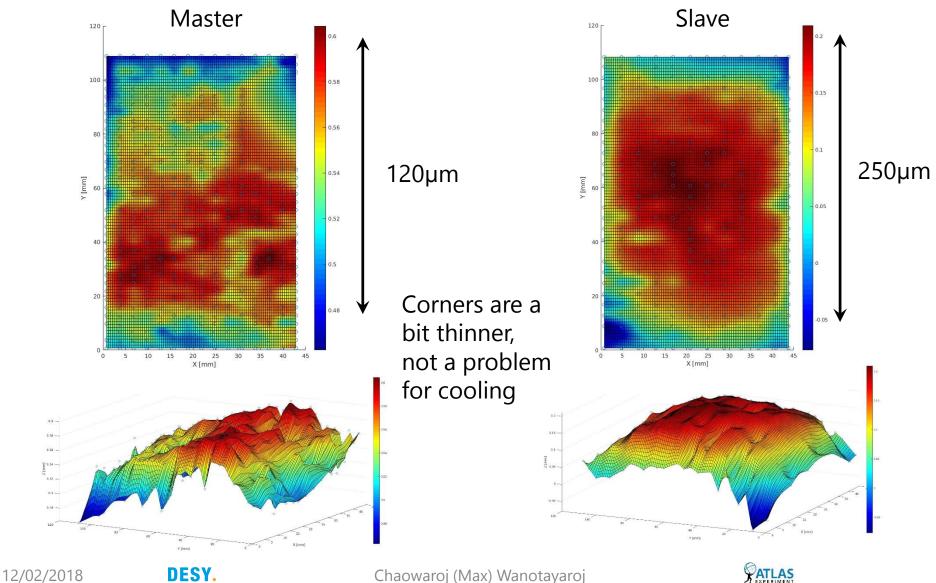
CMD Signal (E-Link)



• Sending "0001" @ 40 MHz (160 Mbps)

20/09/2018 TWEPP 201**BESY.**

Thermal Test



20/09/2018 TWEPP 201**BESY.**

Flatness Test

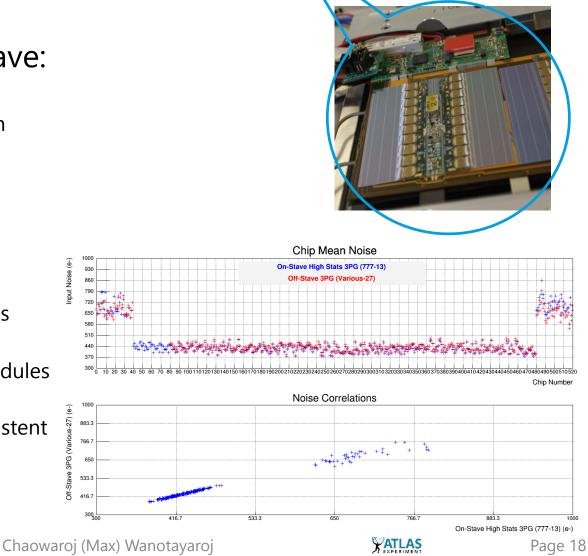
• Measure the flatness of fully populated master and slave board

Bit Error Rate Test

- We ran a preliminary bit error rate (BER) test
- The tests have the full data path
 - FPGA -> Optical link -> EoS (GBTx) -> Elink -> FPGA
- Ran with various configurations:
 - 160 and 320 Mbps
 - All Elinks on and only the used group on
 - With a metal case around the EoS and without
 - With twisted power cables(12v, 1.5v) and without
 - With a prototype DCDC converter (supply only 12v)

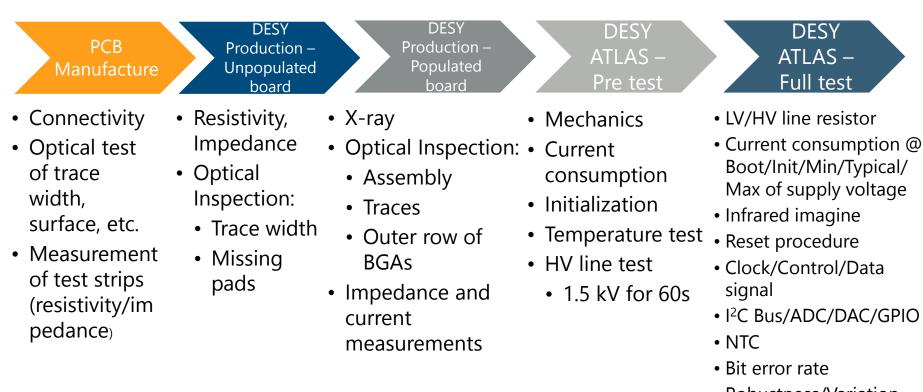
- All tests are more than 15h (<10¹³) error-free
- Two tests were run for ~70h, both with only one Elink group turned on
 - 160 Mbps with metal case and twisted power cables
 - 320 Mbps without metal case and without twisted power cables
- Already better than the aimed 10¹²
 - Should be able to do even better with a proper setup

EoS with Real Stave


- Our colleagues at Rutherford has put a master EoS prototype together with a real stave:
 - Bus tape
 - Full electrical modules at both ends
 - 11 modules with mechanical sensors
- **Results:**
 - LV, HV supply works
 - Connection to pipe NTC works
 - For temperature interlock
 - Configure and readout all modules correctly

(e--27)

3PG (Various


Off-Stav

- Module results on stave consistent with those off stave
- The prototype works!

Test Plan

 EoS sits on a single point of failure for a large part of the detector => need to be well-tested

- Robustness/Variation
- Noise on power line

DESY.

Summary

- We built EoS prototypes using available components
 GBTx instead of IpGBT and SFP+ for VL+
- Learned how to connect and control the chips
- Perform functionality tests to make sure we build them correctly
- Check the thermal and flatness characteristic of our prototypes
- Master prototype has been used and tested with real stave
- Design concept for IpGBT/VL+ based prototypes are ready
- Vigorous tests are planned

Thank you

Backup

20/09/2018 TWEPP 2018

Test Setup

- The basic setup are:
 - EoS board (VLDB or the prototype)
 - FPGA board (currently Xilinx KC705)
 - PC
- We developed the firmware for the FPGA board based on the GBT-FPGA project from CERN
- We wrote a software on PC to control the testing on FPGA board
 - Currently connected by UART interface
 - Plan to move to faster link as we scale up
- Standalone instead of full ATLAS DAQ system
 - Good enough for our needs
 - Simpler to develop and debug.
 - Can be ready as soon as we have the boards and not rely on other developments

Bonding pads:

EOS

Power

supply

12\/

ELINK

Power

AMAC-control

RX

TCC

Master

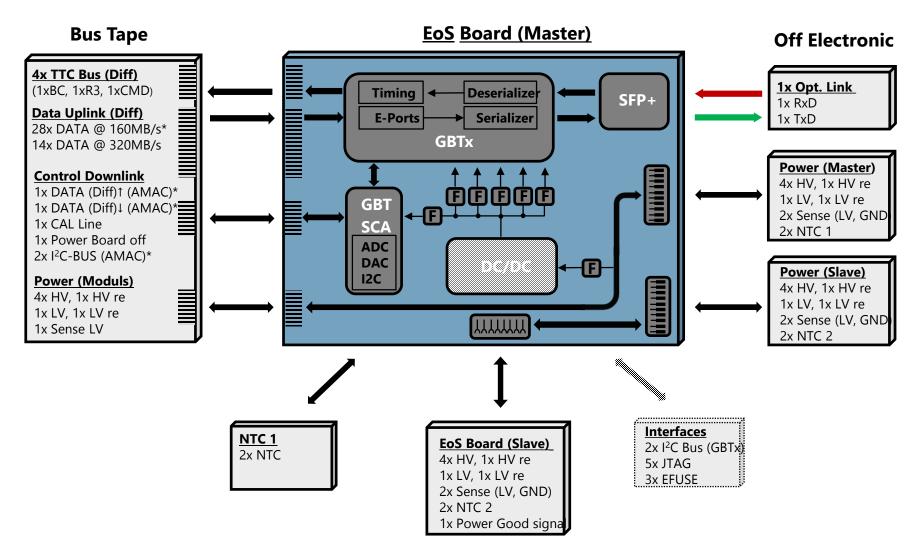
Clock

3x LHC

FPGA

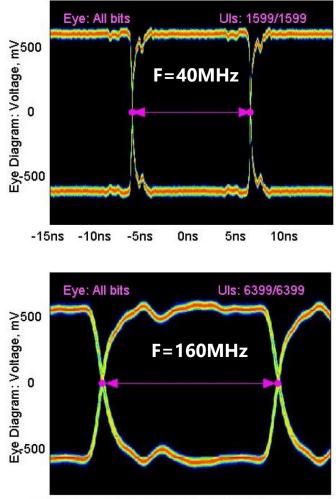
KC 705

Setup schematic

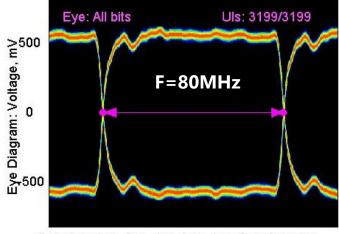

 PC

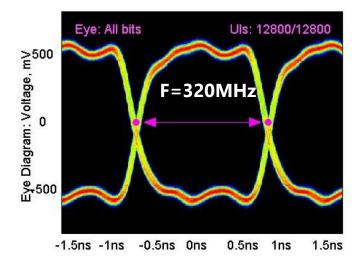
Firmware and Software

- We first integrated GBT-SC IP core to the main GBT-FPGA example designed
 - Include both external control (EC) to GBT-SCA and internal control (IC) of the GBTx itself
 - Test with VLDB, then try it on our prototypes
- Can do both IC and EC communication
 - Configure the GBTx via the optical link instead of I2C
 - Read the SCA's unique ID and control various functionalities
- Controlling of the FPGA and the SCA chip has been implemented on the PC software
 - Enable us to perform functionality test fairly quickly
 - In the future, automation will be build into the software so anyone can run the test
- Add bit error rate test

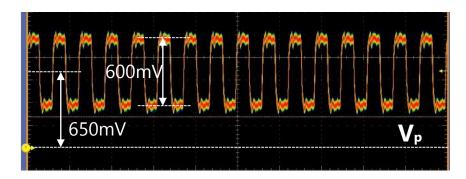


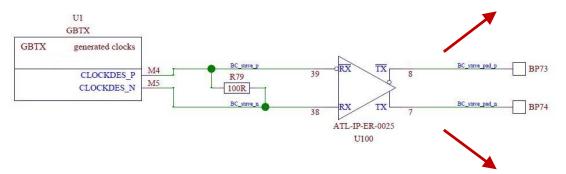
Schematic Diagram

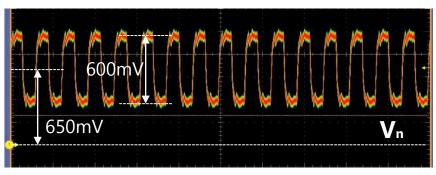



Bunch Clock Signals ("TTC")

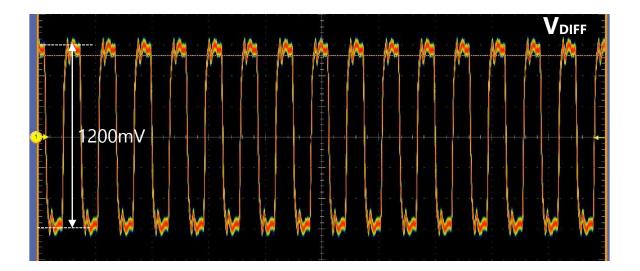
-2.5ns2ns-1.5ns1ns-0.5ns0ns 0.5ns1ns 1.5ns2ns

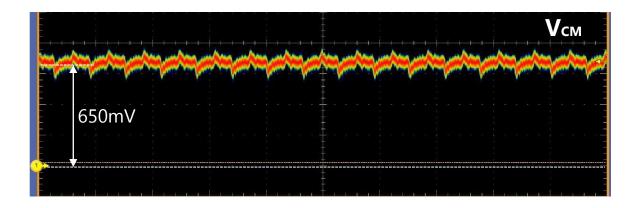



-5ns -4ns -3ns -2ns -1ns Ons 1ns 2ns 3ns 4ns



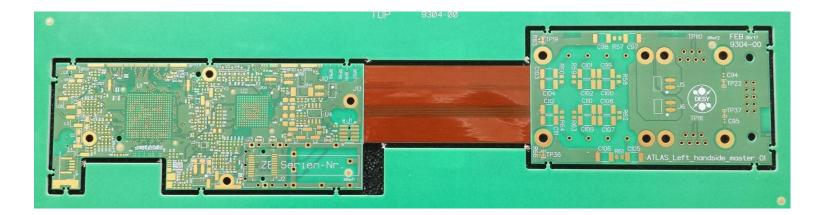
Bunch Clock @ 160 Mbps





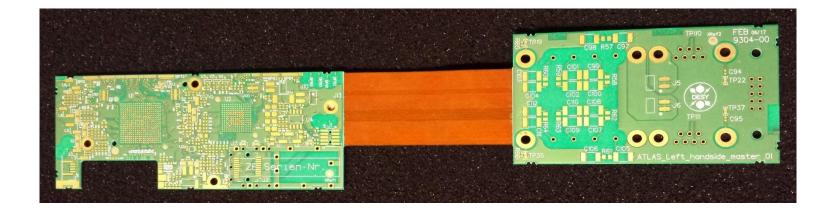
20/09/2018 TWEPP 201**BESY.**

Bunch Clock @ 160 Mbps



20/09/2018 TWEPP 201**BESY.**

1. Manufacturer lests for unpopulated EoS boards


PCB Manufacturer			
	Parameter	TT	Resources
1.1	Connectivity tests on board (E-Test against Netlist)	-	-
1.2	Optical test of trace width, surface	-	-
1.3	Measurement of Test Strips (resistivity/impedance)	-	-

DESY.

DESY Production I			
	Parameter	тт	Resources
2.1	Measurement of test strips on diff. layers:ResistivityImpedance	0,1 min 1 min	Quadrupole Tester Reflectometer
2.2	AOI of the unpopulated PCBtrace width, missing pads,Surface of bonding pads	2 min	AOI System

DESY Production II			
	Parameter	тт	Resources
3.1	X-Ray and destructive solder ball tests (1. board)	3600 min	
3.2	Readability of the RF-ID Chip	0,1 min	RF-ID Reader
3.3	 Optical check: Correct assembly Check of none tested traces (TP<->BP) Outer row of BGAs 	5 min	AOI System
3.4	 Impedance and U/I measurements: Signal connections from/to lpGBT Isolation between NTC lines/HV-return/LV-return and GND Line resistor of HV lines (CON<->BP)? 	3 min	Polartester

DESY.

DESY ATLAS I			
	Parameter	TT	Resources
4.1	 First check of EoS: Mechanical checks (dimensions, position of drill holes, flatness) Current consumption Correct initialisation 	5 min 0,1 min 0,1 min	PS, TB, PC
4.2	 Temperature test Long Term Test @ 40°C for 100 h Cycle Test @ +30°C30°C, 2x in 16 h 	6000 min 960 min	Environemental chamber , PS,TB, PC
4.3	Test of HV lines @ 1,5kV for 60 secElectrical strengthResidual current	10 min	HV-PS

	DESY ATLAS II		
	Parameter	тт	Resources
5.1	Line resistor on HV line between:Connector and Bus Tape Bond Pads	1 min	LV-PS, TB, PC
5.2	Line resistor on LV line between:Connector and Bus tape Bond PadsConnector and DC/DC-converter Bond Pads	1 min	LV-PS, TB, PC
5.3	 Current consumption for 1V8/2V5 After boot process After initialisation At min/typ/max. values of supply voltages 	0,1 min 0,1 min 5 min	LV-PS, TB, PC
5.4	Check of PCB/ASIC temperature (infrared imaging)	4 min	LV-PS, PC, Box, IR Camera
5.5	Reset signal:Function testDelay time of the reset signal (Ub/PWG)	0,1 min 0,1 min	LV-PS, TB, PC
5.6	CCR- and AMAC down Signals:Function TestVCM, VDIFF, Timing	1 min 5 min	LV-PS, TB, PC

	DESY ATLAS II		
	Parameter	тт	Resources
5.7	Data Input Ports (E-Links) and AMAC up: • Function Test	1 min	LV-PS, TB, PC
5.8	 I²C Bus signals: Function Test Vhigh, Vlow, Timing 	0,1min 1 min	LV-PS, TB, PC
5.9	GPIOs: • Function Test	0,1min	LV-PS, TB, PC
5.10	Test of ADC/DAC	0,1min	LV-PS, TB, PC
5.11	Test of NTC temperature measurement	0,1min	LV-PS, TB, PC
5.12	BER Test for 10 ⁻¹³ @ 640Mbit/s and 14 E-Links	20 min	LV-PS, TB, PC
5.13	Robustness and variation test with:DC/DC converterbroken filter C	5 min	LV-PS, TB, PC
5.14	Noise on power lines from board	5 min	LV-PS, TB, PC

DESY Stock

<u>Agenda</u>

HV-PS : High voltage power supply Adapter)

LV-PS : Low voltage power supply **DESY**.

TB : Test bench (FPGA board and EoS Test

PC : Personal Computer Chaowaroj (Max) Wanotayaroj

