An Ultra-Fast 10Gb/s 64b66b Data Serialiser Back-end in 65nm CMOS Technology

Thomas Gardiner – Thomas.Gardiner@stfc.ac.uk

STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom

With future pixel ASICs trending towards mega-frame rate readout, the development of ultra-high-speed readout systems is increasingly important. Here we present a ultra-fast readout system developed to operate at 10Gb/s, and intended to surpass a more conventional highly-parallel LVDS bus approach. The system generates a 5GHz clock (LC Oscillator), scrambles and serialises the parallel input data in accordance with the Aurora 64b66b protocol, and transmits the data off-chip through a Current Mode Logic (CML) line-driver at 10Gb/s. A prototype is under evaluation having been fabricated in early 2018 on a 65nm Multi-Project Wafer. Serialiser ASIC ran at 10.302Gbps under test for 60 hours without a bit-error event.

10Gb/s Serialiser ASIC

The 10Gb/s Serialiser ASIC operates correctly at 10.302Gbps with Aurora 64b66b encoding enabled. From a long run test, the first bit error occurred in just over 60 hours.

The 10Gb/s Serialiser can be summarised in the diagram to the right with the following points:

- A clean 5GHz clock is generated through a LC oscillator PLL.
- A 1.25GHz clocks via multi-gate then is generated through 2 4bit shift counters with both edges of the 5GHz clock.
- Data is encoded in 5bit words every 800ps.
- Encoded data is returned into individual 300ps windows using all 8 1.25GHz clocks via multi-clock domain pipelining.
- Retained encoded data is split alternatively and multiplexed into 2 5Gbps bit-streams.
- The 5Gbps bit-streams are then multiplexed into the final 10Gbps bit-stream with the phase-shifted 5GHz clock.
- Finally the 10Gbps bit-stream is buffered and sent to the CML driver to be driven off chip.

10Gbps Serialiser Block Diagram

Aurora 64b66b Encoding and ASIC Readout

Aurora 64b66b protocol

- Implemented due to being an efficient, robust and common protocol for high speed links.
- Scrumbles the bit-stream to ensure it is DC-balanced for clean data-transmission.
- ASIC also transmits the following special Aurora packets:
 - Clock recovery packets – Allows the receiver and transmitter to operate on asynchronous clock.
 - Error frame packets – Allows the bitstream to be split into packets.
 - Idle packets – When no data is available to be sent, idle packets are sent and then transparently stripped out at the receiver.

Readout system is development for future ASICs:

- Implements a asynchronous FIFO to allow the ASIC system and the 10Gbps Serialiser to operate asynchronously with varying frequencies.
- Utilises elastic buffer with multi cycle clock delays between the FIFO and the Serialiser to lower the minimum operating frequency of the FIFO.
- Serialiser automatically detects when the FIFO is empty through piped status flags and instead sends idle packets until data is available.

CML Driver and Modelling/Simulation

CML driver model:

- Used a standard CML architecture in 65nm and a 1.2V power supply.
- Counter charge injection transistors (half driver width) were added to correct the significant charge injection from the driver transistors due to a large gate to drain capacitance.

Simulated channel model includes:

- CML driver model: RLC extracted transistor model from Aurora QRC tools.
- Wire-bond model: RLC schematic model derived from first principles due to being fairly well understood geometry.
- PCB model: spice extracted model of the differential CML tracks on a preliminary test board PCB design with manufacturing properties included.

All four models were simulated together in a spice simulation, the result of which is shown below.

Simulated Bit-stream 10.302Gbps

LC Oscillator PLL

- LC oscillator was chosen for superior performance in jitter, duty cycle and stability.
- LC oscillator was attached to an analogue charge pump PLL architecture to meet the clock system requirements.
- Custom True Single Phase Clocking (TSPC) flip-flops were designed to operate at 5GHz plus and used in the PLL to divide the generated clock down. Also used in the Serialiser.
- Configurable capacitor damping allows additional tunability.
- Duty cycle operates at 47% at 5GHz.
- Frequency response is linear with a frequency range of 4.6 - 6.1GHz.

Test System

The sophisticated test system includes the following modules:

- TI DS110DF410 Retimer IC - Buffers bit-stream through resampling, this allows any previous channel effects to be reset.
- SI570 Programmable Crystal IC – Generates a low jitter highly stable clock (Critical for high-speed links); generated clock is used as a reference clock for the PLL in the ASIC.
- SI5324 Clock Multiplier – Multiplies the previously generated reference clock to a frequency compatible for the reference clock of Xilinx's 10Gbps transceiver IP.
- Xilinx KC705 FPGA (Aurora 64b66b 10Gbps Transceiver) – Receives the 10Gbps bit-stream, decodes and decodes the data.
- Xilinx KC705 FPGA (Synthesised Error Detection Code) – Checks the decoded bit-stream against defined bit-patterns generated on the ASIC. Debug software allows time-stamping when a bit-error is detected along with the difference in patterns.

Test System Block Diagram