PSEC4A : A 10 GSa/s Waveform Sampling ASIC with Multi-Event Buffering Capability

E. Oberla1, J. Porter2, and J. Stahoviak2

1Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL USA
2Sandia National Laboratories, Albuquerque, NM USA

Contact: jporto@sandia.gov or eric.oberla@gmail.com

Abstract

We present the design and performance of PSEC4A: an 8-channel, 10 GSa/s switched-capacitor array waveform sampling and digitizing ASIC designed in 0.13 \(\mu\)m CMOS based on the PSEC4 chip1,2. The PSEC4A incorporates multi-event buffering to reduce deadtime-induced latency for close-in-time triggers by using a primary sampling array of 132 switched-capacitors that can be written to a bank of 1056 storage capacitors, which are segmented in 8 randomly-accessible blocks. With a dual-speed voltage control delay line, the sampling rate is stable over a wide range from 1-10 GSa/s. Each channel has an integrated 11-bit ramp-compare ADC with shift-register readout that permits simultaneous sampling, digitization, and readout operations. Single-level discriminators are included with each channel and the trigger thresholds can be set using on-chip 10-bit DACs. The \(\pm 1\) dB bandwidth is 920 MHz, which is limited by the relatively long bondwires in the prototype ASIC package. The -3dB analog bandwidth is measured to be 1.9 GHz.

Chip Architecture

- The PSEC4A is based on a 132-sample primary switched capacitor array (SCA), which is driven by a voltage controlled delay line that feeds a timing generator circuit. At 10GSa/s operation, \(~700\) ps wide sampling strobes are generated for each primary cell.
- Each primary cell has a buffer amplifier and a closely integrated bank of 8 storage capacitors, which are addressable by the FPGA controller. The transfer window is hard-wired on chip to be \(96\)-sampling intervals in duration. Blocks of 12 primary cells are transferred to the addressed storage cell simultaneously in all channels over a period of \(~10\) ns (when running at 10 GSa/s).
- The PSEC4A analog-to-digital circuitry is heavily drawn from the earlier PSEC4 ASIC1. The ramp-compare ADC runs to 11-bit resolution on a 1 GHz ring-oscillator derived clock, taking 2 \(\mu\)s to finish converting 132 samples \(\times 8\) channels in parallel.
- Digitized data are stored in a 4-bit serial latch that is included with each bit in the ADC counter, which saves the digital samples before the higher latency serial readout (\(~2\) \(\mu\)s per 132 samples per channel). This permits rapid digitization of 528 samples on all channels (finished in \(~8\) \(\mu\)s) to prevent any significant sample degradation from leakage on the primary SCA.
- Timing of ‘wraparound’ interval (sample 132\(\rightarrow\)1) can be tuned with an on-chip delay to remove gaps in sampling.

PSEC4A Performance

- Noise
 - Somewhat higher than PSEC4 (0.7 mV RMS), LSB of on-chip ADC is \(~0.35\) mV. A dominant noise source is the primary sampling capacitor (\(~18\) fF).

- Signal Range
 - PSEC4A has \(~0.8\) V usable range on the 1.2V core voltage. The linearity performance of the ADC is poorer than the PSEC4 (\(~0.2\)% linearity deviation over a 0.75 V range) due to single-stage ADC comparator, required for compactness. It is corrected in a count-to-voltage LUT.

- Analog bandwidth
 - Long package bandwidths contribute to peaking at \(>1\) GHz. -3dB bandwidth is measured at 1.9 GHz using an ultra-wideband impulse.

- References

Evaluation Board

- The PSEC4A is packaged in a 128-pin LQFP package. This is oversized for the 4x4 mm\(^2\) die, but allowed the monitoring of a number of debugging signals and all of the internal DAC values (which have been verified as functional).
- The internal DACs and other settings are programmed using a serial interface within the chip.
- This mezzanine board plugs into a FPGA + USB motherboard that was designed for the PSEC4 ASIC evaluation.
- The board uses a 75 MHz oscillator (for a default 10 GSa/s operation), but also accepts an external clock to rapidly test other sampling rates.
- The chip operates on a single \(+1.2\) V supply.
- Our baseline testbench runs PSEC4A in a 528-sample ‘ping-pong’ mode \(\rightarrow\) 50 ns waveform @ 10 GSa/s

42-Channel System

- Modular evaluation system for use as x-ray and particle detector at Sandia’s Z Pulsed Power Facility3
- Mating 42 channel photodiode board allows customization of detectors for different applications