Experimental methods to localize the origin of SEL in V2 Digital core

1. Heavy-Ion tests with collimators
 - Developed 2 aluminum collimators with thickness of 2 mm.
 - 1. Dual collimator to irradiate SAMPA dual port SRAM IPs.
 - 2. Single collimator to irradiate only SAMPA single port SRAM IPs.

2. Backside irradiation with Pulsed-Laser
 - Pulsed-Laser automated scan showed that the SEL events trigger only inside the bit-cell circuits of the single port SRAM IPs, and not in the periphery circuits.
 - SEL events were detected up to 1025 pJ of laser energy.

Conclusions
- Heavy-Ion campaign indicated that SAMPA V2 prototypes were highly sensitive to SEL events.
- SEL LET > 3.3 MeV cm²/mg makes it critical to operate safely in the ALICE radiation environment.
- Both Heavy-Ion and Pulsed-Laser campaigns confirmed that the cause of SEL events was related to single port SRAM IPs in the V2 prototypes.
- The campaigns confirmed that SAMPA SEL sensitivity reduced linearly by decreasing the supply voltage and completely removed below 1.1 V.
- The campaigns assured that the final versions V3 and V4 of the SAMPA chip are unsensitive to SEL effects and fully qualify to operate in the ALICE radiation environment.

Acknowledgements
SAMPA design team from Sao Paulo and IPN team from Orsay are acknowledged for providing the SAMPA chips and carrier boards to perform these tests. This work is partially funded by Norwegian PhD Network on Nanotechnology for Microsystems, which is sponsored by the Research Council of Norway, Division of Science, under contract no. 221860/F60.