TWEPP 2018 Topical Workshop on Electronics for Particle Physics

Contribution ID: 11 Type: Poster

ATLAS Tile Calorimeter Link Daughter Board

Thursday 20 September 2018 18:15 (15 minutes)

We have developed an updated DaughterBoard design for control and readout of the upgraded ATLAS hadronic Tile Calorimeter electronics for HL-LHC. The new design migrated from two QSFPs to four SFP+ modules handling: 4×9.6 Gbps uplinks operated by two Kintex Ultrascale+ FPGAs, and 2×4.8 Gbps downlinks operated by two GBTxs. The uplink sends continuous high-speed readout of digitized PMT samples, while the downlink receives control, configuration and LHC timing. TMR, FEC and CRC strategies, plus a double redundant design with radiation tolerant components, minimize single failure points and improves resistance to single-event upsets caused by minimum ionizing and hadronic radiation.

Summary

We have developed an updated DaughterBoard design for control and readout of the upgraded ATLAS hadronic Tile Calorimeter electronics for HL-LHC. The new design migrated from two QSFPs to four SFP+ modules handling: 4×9.6 Gbps uplinks operated by two Kintex Ultrascale+ FPGAs, and 2×4.8 Gbps downlinks operated by two GBTxs. The uplink sends continuous high-speed readout of digitized PMT samples, while the downlink receives control, configuration and LHC timing. TMR, FEC and CRC strategies, plus a double redundant design with radiation tolerant components, minimize single failure points and improves resistance to single-event upsets caused by minimum ionizing and hadronic radiation.

This talk will describe the architecture, radiation and beam tests of versions 3 and 4, and design of the current version 5 board.

Authors: Mr VALDES SANTURIO, Eduardo (Stockholm University (SE)); OREGLIA, Mark (University of Chicago (US))

Co-authors: SILVERSTEIN, Samuel (Stockholm University (SE)); BOHM, Christian (Stockholm University (SE))

Presenter: Mr VALDES SANTURIO, Eduardo (Stockholm University (SE))

Session Classification: Posters

Track Classification: Radiation Tolerant Components and Systems