IpGBT – a User’s Perspective

Paulo Moreira, CERN
on behalf of the IpGBT team

Topical Workshop on Electronics for Particle Physics
17 – 21 September 2018 – Antwerp, Belgium
IpGBT Team

Design:

- **CERN:** David Porret, Jose Fonseca, Ken Wyllie, Paulo Moreira, Pedro Leitao, Rui Francisco, Sophie Baron, Szymon Kulis, Daniel Hernandez
- **AGH UST:** Marek Idzik, Miroslaw Firlej, Jakub Moroń, Tomasz Fiutowski, Krzysztof Swientek
- **KU Leuven:** Bram Faes, Jeffrey Prinzie, Paul Leroux
- **UNL – FCT:** João Carvalho, Nuno Paulino
- **SMU Physics:** Datao Gong, Di Guo, Dongxu Yang, Jingbo Ye, Quan Sun, Wei Zhou
- **SMU Engineering:** Tao Zhang, Ping Gui

Building blocks:

- **Czech Technical University Prague:** Miroslav Havranek, Tomas Benka
- **CERN:** Stefano Michelis, Iraklis Kremastiotis, Alessandro Caratelli, Kostas Kloukinas
Finding Information

• Starting point:
 • www.cern.ch/proj-gbt
 https://espace.cern.ch/GBT-Project/LpGBT/default.aspx

• Specifications:
 • https://espace.cern.ch/GBT-Project/LpGBT/Specifications/LpGbtxSpecifications.pdf

• In this conference:
 • This presentation:
 • https://indico.cern.ch/event/697988/contributions/3075493/
 • Simulation and testing:
 • An UVM-based verification environment for the lpGBT 10 Gbps transceiver ASIC:
 https://indico.cern.ch/event/697988/contributions/3056029/
 • lpGBT-FPGA:
 • Introduction to the lpGBT-FPGA: Introduction to the lpGBT-FPGA:
 https://indico.cern.ch/event/697988/contributions/3141889/attachments/1718898/2774016/Introduction_to_the_LpGBT-FPGA_-_workshop.pptx
 • New lpGBT-FPGA IP: Simulation model and first implementation:
 https://indico.cern.ch/event/697988/contributions/3056073/
LpGBT Project Schedule

- Q1-Q3 2018:
 - Package procurement and engineering completed
 - MPW tapeout 25th July 2018
 - Test system: PCB / Software under production

- Q4 2018
 - Prototypes available (~300 ASICs)
 - Option for additional 300 if all OK

- Q1 – Q3 2019:
 - Prototype functional testing
 - Radiation qualification
 - Production testing development

- Q4 2019:
 - Engineering run

- Q3 2020
 - Engineering ASICs (~40k) available to the users

- Q3 2021:
 - Production completed (~100k ASICs)
IpGBT Link Architecture

High radiation doses

- LHC: up to 100 Mrad (10^{14} 1MeV n/cm2)
- HL – LHC: up to 1 Grad (10^{16} 1MeV n/cm2)

No or small radiation doses

- Short distance optical links: 50 to 300 m

Electrical links to the frontend modules. Lengths: cm to few m

Custom optoelectronics

Custom ASICs

On-Detector
Radiation Hard Electronics

Off-Detector
Commercial Off-The-Shelf (COTS)

Timing & Trigger
DAQ
Slow Control

FPGA

TIA
LD
PD
LD

TWEPP 2018
Paulo.Moreira@cern.ch
What’s the LpGBT?

- **Data transceiver with fixed and “deterministic” latency for both up and down links.**
 - Clocks and Data

- **Down link:**
 - 2.56 Gbps
 - FEC12
 - eLinks:
 - Bandwidth: 80/160/320 Mbps
 - Count: 16/8/4

- **Up link:**
 - 5.12 Gbps or 10.24 Gbps
 - FEC5 or FEC12
 - eLinks:
 - Data rates: 160 / 320 / 640 / 1280 Mbps
 - Count:
 - FEC5
 - Up to 28 @ 160 Mbps
 - Up to 7 @ 1.28 Gbps
 - FEC12
 - Up to 24 @ 160 Mbps
 - Up to 6 @ 1.28 Gbps

- **Experiment control/monitoring functions:**
 - 10-bit ADC
 - 12-bit voltage DAC
 - 8-bit current DAC
 - Temperature sensor
 - Three I2C masters
 - Programmable parallel port: 16 x GPIO

- **Package:**
 - 9 mm x 9 mm x 1.25 mm (pitch: 0.5 mm)
 - Pin count: 289 (17 x 17)
The IpGBT is designed in 65 nm CMOS process

Targets [no only] the innermost layers of the HL-LHC detectors:

- **Total Ionizing Dose (TID):**
 - 200 Mrad
- **Non Ionizing Energy Loss (NIEL) radiation:**
 - $\sim 10^{15} \text{ 1 MeV } n_{eq}/\text{cm}^2$ (mainly a concern for the optoelectronics components)
- [Over a 10 years lifetime]

Operation robust to Single Events Upsets:

- **Triple Modular Redundancy (TMR) used in the State Machines and the “low-frequency” section of the Data Path**
- **Forward Error Correction used in the “high-frequency” section of the data path and over the optical links**
- **New LC-VCO architecture for increased SEU-Tolerance and low jitter.**
LpGBT System Block Diagram (Simplified)

FE Module
- E-Port

Phase - Aligners + Ser/Des for E - Ports
- E-Port

E - Port
- Phase - Shifter
- CLK Manager
- CDR/PLL
- SCR
- ENC
- SER
- LD
- DeSER
- DSCR

Control Logic
- ADC
- PID

Configuration (e-Fuses + reg-Bank)
- I2C Slave
- I2C Masters

LpGBT
- EDM

I2C Masters
- I2C Port
- I2C Ports
- I2C Slave

I2C Port
- aIn[15:0]

I2C Slave
- I2C Port

ADC
- aiIn[7:0]

PID
- IO[15:0]

LpGBTIA
- 2.56 Gbps

LpGBLD
- 5.12 Gbps
- 10.24 Gbps

LR
- Ref CLK (optional)

eLink
- clock
- data-up
- data-down

160 Mbps to 128 Gbps ports

One 80 Mbps port

GBT – SCA
- E-Port

FE Module
- E-Port

FE Module
- E-Port

FE Module
- E-Port
Configuration

- FE Module
 - E-Port
- GBT – SCA
 - E-Port

- Phase - Shifter
 - DSCR
 - DEC
 - DeSER
 - CLK Manager
 - CDR/PLL
 - SCR
 - ENC
 - SER
 - Configuration (e-Fuses + reg-Bank)
 - Control Logic
 - ADC
 - PID
 - I2C Slave
 - I2C Masters
 - I2C Port
 - I2C Ports

- LpGBT
 - LpGBTIA
 - 2.56 Gbps
 - Ref CLK (optional)
 - 5.12 Gbps or 10.24 Gbps
 - LpGBLD
 - 160 Mbps to 1.28 Gbps ports
 - One 80 Mbps port

- eLink
- data-down
- data-up
- clock
- 160 Mbps to 1.28 Gbps ports
- I2C Masters
 - I2C Port
 - I2C Ports

- LR

- PDO
- clocks
- data

Paulo.Moreira@cern.ch
Programming the lpGBT (1/2)

- The lpGBT is a highly flexible device:
 - Transceiver modes / Locking modes / Uplink data rate / FEC coding / Clock frequencies / Clock phases / Number of active eLinks / Phase-aligner modes / Pre-emphasis / Equalization / Driving strengths / … / …

- It won't simply work by just having it installed in your system...!

- It needs to be configured!

- There are:
 - 11 configuration pins to be “hardwired”;
 - 320 registers to be programmed (240 R/W/F + 80 R/W + 142 R (status));

- Configuration pins define the “basic” operation mode;

- Configuration registers “customize” for the user application:
 - Some of them also affect the basic operation (e.g. PLLs, DLLs, startup procedure, etc.);
Programming the IpGBT (2/2)

- Several options are available to read / write the configuration registers:
 - I2C port, always possible;
 - IC channel, only possible in Transceiver mode;
 - EC port, only possible in simplex TX or RX modes;
 - Access mode needs to be configured [pin “SC_I2C”].

- Optionally, the user’s configuration can be “burned into” the ASIC on a bank of “eFuses” and copied at startup into the configuration registers
 - Requires additional 2.5 V supply voltage during the programming cycle.
Electrically Interfacing with the Frontends
eLinks Electrical “Standard”

- CLPS “CERN Low Power Signalling”
 - [This should] avoid any confusion with LVDS or SLVS;
- Link type:
 - Point – to – point
 - Multi – drop transmitter
- Max data rate:
 - 1.28 Gbps (NRZ)
- Max clock frequency:
 - 1.28 GHz
- Programmable signalling level:
 - 100 mV to 400 mV (single-ended PP amplitude)
 - 200 mV to 800 mV (differential PP amplitude)
- Common mode voltage:
 - 600 mV (nominal)
- Load impedance:
 - 100 Ω

Common mode in the middle of the supply (Vdd/2) for best tolerance to ground fluctuations between modules;
Off chip capacitors if AC coupling needed!

Remember: AC coupling introduces a zero at:
\[f = \frac{1}{2\pi \times Cc \times 100 \ \Omega} \]
reducing the number of consecutive zero and ones that can be sent over the line reliably (DC base wander).
An external termination can be used to improve this but will certainly complicate your layout.

Specs
- **Data rate:**
 - Up to 1.28 Gbps
- **Common mode voltage range:**
 - 70 mV – 1.13V
- **Differential input voltage:**
 - 140 mV – 450 mV

Programmable
- ON/OFF receiver (for power saving)
- Data polarity (to simplify routing)
- ON/OFF termination (100 Ω)
- ON/OFF common mode setting (for AC coupling, \(V_{dd}/2 \))
- Programmable equalization:
 - Optimized for cables with bandwidths of “infinite” (equalization off), 448, 299 and 224 MHz
eLink Data Sampling and “Deserialization”
The phase of the incoming data signals is “unknown” in relation to the internal sampling clock!

There are up to 28 eLinks inputs (potentially) all with random phase offsets.

The solution:
- “Measure” the phase offset of each eLink input
- Delay individually each incoming bit stream to phase align it with the internal sampling clock
Phase-Aligner Block Diagram

- **Resampled Data**
 - Q, D, CK

- **Input Data (unknown phase)**
 - bitRateClock

- **Reference DLL**

- **Delay Line (reference)**
 - PD, CP, LPF

- **Delay Line (replica)**

- **MUX**

- **Phase Selection Logic**
 - trackMode [2:0]
 - enableChannel
 - trainChannel
 - resetChannel
 - phaseSelectChannel [3:0]

- **Data Rate** [2:0]

- **DLL Config** [3:0]

- **DLL Reset**
Automatic, semi-automatic or user driven procedures:
1. “Examine” all the eLink phases
2. Detect where the data “edges” are in relation to the clock;
3. Choose the phase that has the edges better centred around the clock
4. In automatic mode:
 • Once aligned, the PA can track the data phase wander that cover virtually a full clock cycle:
 • To allow for this, the delay line covers more than one bit period: $1.75 \times T_{\text{bit}}$
 • And, during initialization only phases 4 to 11 are allowed

TWEPP 2018
Paulo.Moreira@cern.ch
Using the Phase-Aligner(s)

- There are 8 phase-aligners in the lpGBT:
 - 7 serve 28 data eLinks;
 - 1 serves the EC eLink.

- A phase-aligner serves 4 eLink channels:
 - Called an eLink Group.

- The four channels in a Group share a calibration DLL;

- User must setup:
 - The calibration DLL
 - The individual phase-aligner channels corresponding to the eLinks in use.

Phase Aligner Check list:

- Set the group data rate;
 - This sets the maximum number of eLinks per group (see next slides);

- Configure the DLL parameters;

- Reset the DLL;

- Set the phase alignment mode:
 - Static phase selection:
 - User intervention needed.
 - Initial training with learned static phase selection:
 - User intervention needed
 - Automatic phase tracking;

- Enable and reset the channels in use;
eLink Rx Groups

- eLinks are “clustered” in groups of 4:
 - Simply called groups.
- The number of available groups is determined by the FEC uplink code in use;
- The number of available eLinks within a group is determined by the Group data rate;
- The possible data rates depend on the uplink bandwidth (5.12 or 10.24 Gbps)
- The data rate of each group can be set independently:
 - A couple of [over complicated] examples:
 - uplink 5.12 Gbps & FEC12: 8 eLinks x 160 Mbps + 4 eLinks x 320 Mbps + 2 eLinks x 640 Mbps
 - uplink 10.24 Gbps & FEC5: 8 eLinks x 320 Mbps + 4 eLinks x 640 Mbps + 3 eLinks x 1.28 Gbps

<table>
<thead>
<tr>
<th>Input eLinks (uplink)</th>
</tr>
</thead>
<tbody>
<tr>
<td>uplink bandwidth [Gbps]</td>
</tr>
<tr>
<td>FEC coding</td>
</tr>
<tr>
<td>Bandwidth [Mbps]</td>
</tr>
<tr>
<td>Maximum number</td>
</tr>
</tbody>
</table>

TWEPP 2018
Paulo.Moreira@cern.ch
20
Note about eLink Input Pin Names

- Input to the lpGBT
- Group number: 0, 1,… 6 (there are 7 groups)
- Pin Polarity: P – Positive, N – Negative
 (Remember: polarity can be inverted at the output of the corresponding eRx)
- Channel number within a group: 0, 1, 2 or 3 (there are 4 eLinks associated with every group)

Example: EDIN32N – eLink data input group 3 channel 2 negative polarity pin
The EC “Group”

• The EC “group” is a special case!
• It is composed of a single eLink!
• It only works at 80 Mbps!
• EC channel eLink Functionality is only available in Transceiver mode;
• In transceiver mode it is always available independently of the other Groups activity;
• Its mission is to implement an “experiment control” link, however it can be used as a general purpose link;
• [As seen before, this input can be used to control the ASIC in the simplex modes (TX / RX) but not in transceiver mode]

• Pins:
 • EDINECP (eLink Data In EC channel Positive pin)
 • EDINECN (eLink Data In EC channel Negative pin)
eLink Deserialization

- eLink inputs receive serial data from the frontend devices;
- These data is de-serialized and inserted in the uplink frame to be transmitted to the counting room (more on this soon):
 - The frame is processed in parallel in the chip before it is itself serialized for uplink transmission.
- In the case of transmission at 5.12 Gbps an eLink Group is always associated with the same 16-bits in the frame, the **group bits**.
- The same is true for 10.24 Gbps but in this case the group bits are 32 (the uplink frame is twice as long).
- The user knows from the position of the bits in the frame from which eLink group the data belongs to!
- Moreover, depending on the data rate, a specific eLink is identified by the position of the corresponding bits within the “group bits” (or simply, the position within the frame).
- After the eLinks input data is de-serialized, scrambling, FEC coding, interleaving header insertion and high-speed serialization takes place in the uplink data path...
Uplink Data Path
High – Speed Uplink Frame

• The LpGBT supports the following uplink data rates:
 • 5.12 / 10.24 Gbps

• Data is transmitted as a frame composed of:
 • Header
 • The data field
 • A forward error correction field: FEC5 / FEC12

• The data field is scrambled to allow for CDR operation at no additional bandwidth penalty

• Efficiency = # data bits/# frame bits

<table>
<thead>
<tr>
<th></th>
<th>5.12 Gbps</th>
<th></th>
<th>10.24 Gbps</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FEC5</td>
<td>FEC12</td>
<td>FEC5</td>
<td>FEC12</td>
</tr>
<tr>
<td>Frame [bits]</td>
<td>128</td>
<td>102</td>
<td>256</td>
<td>204</td>
</tr>
<tr>
<td>Header [bits]</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Data [bits]</td>
<td>116</td>
<td>24</td>
<td>20</td>
<td>48</td>
</tr>
<tr>
<td>FEC [bits]</td>
<td>10</td>
<td>24</td>
<td>20</td>
<td>48</td>
</tr>
<tr>
<td>Correction [bits]</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Efficiency</td>
<td>91%</td>
<td>80%</td>
<td>91%</td>
<td>80%</td>
</tr>
</tbody>
</table>
Example: 5.12 Gbps FEC5 Uplink Frame

<table>
<thead>
<tr>
<th>Frame</th>
<th>Function</th>
<th>I/O Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRMUP[9:0]</td>
<td>FEC[9:0]</td>
<td>0</td>
</tr>
<tr>
<td>FRMUP[25:10]</td>
<td>Data[15:0]</td>
<td>1</td>
</tr>
<tr>
<td>FRMUP[41:26]</td>
<td>Data[31:16]</td>
<td>2</td>
</tr>
<tr>
<td>FRMUP[73:58]</td>
<td>Data[63:48]</td>
<td>4</td>
</tr>
<tr>
<td>FRMUP[89:74]</td>
<td>Data[79:64]</td>
<td>5</td>
</tr>
<tr>
<td>FRMUP[105:90]</td>
<td>Data[95:80]</td>
<td>6</td>
</tr>
<tr>
<td>FRMUP[121:106]</td>
<td>Data[111:96]</td>
<td>7</td>
</tr>
<tr>
<td>FRMUP[123:122]</td>
<td>EC[1:0]</td>
<td>8</td>
</tr>
<tr>
<td>FRMUP[125:124]</td>
<td>IC[1:0]</td>
<td>9</td>
</tr>
<tr>
<td>FRMUP[127:126]</td>
<td>H[1:0] = 2'b10</td>
<td>10</td>
</tr>
</tbody>
</table>

Note: This is how you will see the uplink frame after it has been processed by the lpGBT-FPGA receiver but not how it is actually transmitted by the lpGBT ...

Number of data ports:
- 28 eLinks @ 160 Mbps
- 14 eLinks @ 320 Mbps
- 7 eLinks @ 640 Mbps

7 groups of 4 input e-Ports
Uplink data path

The order of operations is important

We avoid the details here since you will not have to worry with them, they will be “handled” by IpGBT-FPGA
High-Speed Line Driver

- FE Module
- E-Port
- Phase - Aligners + Ser/Des for E-Ports
- E-Port
- Phase - Shifter
- E-Port
- DSCR, DEC, DeSER
- CLK Manager
- CDR/PLL
- LR
- LD
- Control Logic
- Configuration (e-Fuses + reg-Bank)
- SCR, ENC, SER
- ADC, PID
- I2C Slave
- I2C Masters
- I2C Port
- 160 Mbps to 1.28 Gbps ports
- One 80 Mbps port
- GBT – SCA
- 2.56 Gbps
- LpGBTIA
- 5.12 Gbps or 10.24 Gbps
- LpGBLD
- Ref CLK (optional)
- 2.56 Gbps
- Clocks
- Data
- Control

TWEPP 2018
Paulo.Moreira@cern.ch
Line – Driver Topology

- **Limiting Amplifier**
- **Buffer Stage**
- **Modulation Stage**
- **Delay Stage**
- **Emphasis Stage**

IN\(^+\)
IN\(^-\)
OUT\(^+\)
OUT\(^-\)

modDAC\(^{<6:0>}\)

Reference Generator

empDAC\(^{<6:0>}\)

- Accommodate the large capacitive load
- RC delay to generate the pre-emphasis pulse

DAC

- **On-chip 100 Ω matching**
- \(I_{\text{max}} = 12 \text{ mA}\)
- \(I_{\text{max}} = 8 \text{ mA}\)

Pre-emphasis current driver

TWEPP 2018

Paulo.Moreira@cern.ch
Line driver simulations (@5.12Gbps)

\[I_{cc} = 40 \text{ mA} \]
\[I_{mod} = 12 \text{ mA} \]
\[I_{pre} = 8 \text{ mA} \]
\[C_{out} = 500 \text{ fF} \]
Process: SS_100C_1.2V

Advantage:
- Pre-emphasis is made by subtracting the “bit stream” to itself after inversion and scaling!
- No narrow pulses required (as needed for the eTx scheme)

Disadvantage:
- The pre-emphasis is done by reducing the amplitude rather than peaking the signal during the pre-emphasis phase.
- The driver consumes in permanence \(I_m + I_{pre} \).

\[I_{pre}(t) = -\alpha \cdot I_m(t - \Delta t) \]
\[I_{out}(t) = I_m(t) + I_{pre}(t) \]

TWEPP 2018

Paulo.Moreira@cern.ch
High-Speed Line Receiver / Equalizer
The Equalizer in the LpGBT

- **To be used in case of “low bandwidth” downlink**
 - “Bypassed” by default.
- **If needed, user programs the positions of the zeros of the four CTLE stages (and the 1st stage attenuation)**
- **It is an iterative process in a “case-by-case” basis**
Eye Opening Monitor

- FE Module
- E-Port
- Phase - Shifter
 - DSCR
 - DEC
 - DeSER
- CLK Manager
- CDR.PLL
- SCR
- ENC
- SER
- Control Logic
- Configuration (e-Fuses + reg-Bank)
- ADC
- PID
- I2C Slave
- I2C Masters
- Phase - Aligners + Ser/Des for E-Ports
 - 160 Mbps to 1.28 Gbps ports
- E-Port
- FE Module
- FE Module
- FE Module
- GBT – SCA
- One 80 Mbps port

- LpGBTIA
- LpGBLD
- 2.56 Gbps
- 5.12 Gbps or 10.24 Gbps
- LR
- Ref CLK (optional)
- eLink
- data-down
- data-up
- clock
- 160 Mbps
- One 80 Mbps port

TWEPP 2018
Paulo.Moreira@cern.ch
Eye Opening Monitor

- **Y-axis:**
 - 31 points, step = ~20 mV (covers from $V_{DD}/2$ up to V_{DD})

- **X-axis:**
 - 64 points, step = ~6.1 ps in typical

- **Operation:**
 - Controlled through the I2C interface
 - Eye reconstruction at the "backend"

![Diagram of Eye Opening Monitor]

- **Data Flow:**
 - **DAC:**
 - Data+ and Data- inputs
 - V$_{of+}$ and V$_{of-}$ outputs
 - **DFF:**
 - Compensation
 - **CML:**
 - CMOS
 - To Counter
 - **Phase Interpolator:**
 - Sel Phase[5:0]
 - Clk2G56p
 - **CompQ:**
 - Comp

![Eye Opening Monitor Plots]

- **Eye Opening Monitor Plots:**
 - In-phase Signal
 - EOM

TWEPP 2018

Paulo.Moreira@cern.ch
PLL / CDR and Clock Manager

- PLL / CDR and Clock Manager
- FE Module
- Phase - Aligners + Ser/Des for E-Ports
- E-Port
- E-Port
- E-Port
- GBT - SCA
- One 80 Mbps port
- 160 Mbps to 1.28 Gbps ports
- data-down
- data-up
- Clock
- One 80 Mbps port

- I2C Masters
- I2C Slave
- ADC
- PID
- I2C Port
- I2C Slave
- I2C Masters

- Control Logic
- Configuration (e-Fuses + reg-Bank)
- DSCR
- DEC
- DeSER
- SCR
- ENC
- SER
- CLK Manager
- CDR/PLL
- LR
- 2.56 Gbps
- LpGBTIA
- Ref CLK (optional)
- LpGBLD
- 5.12 Gbps
- 10.24 Gbps
- 1.28 Gbps ports
- eLink

TWEPP 2018
Paulo.Moreira@cern.ch
This circuit generates all the clocks needed by the ASIC:
- 40 MHz, 80 MHz, ..., 5.12 GHz
- The 10.24 Gbps Serializer uses a DDR scheme

Simplex TX:
- A 40 MHz external reference is needed

Simplex RX and Transceiver:
- The downlink serial stream is used as a clock reference

CDR Locking modes:
- External reference aided
- Reference-Less Locking
Down Link Data Path

- **FE Module**
 - E-Port
 - FE Module
 - E-Port
 - Phase - Aligners + Ser/Des for E-Ports
 - E-Port
 - FE Module
 - E-Port
 - E-Port
 - GBT – SCA

- **LpGBT**
 - DSCR
 - DEC
 - DeSER
 - CLK Manager
 - CDR/PLL
 - SCR
 - ENC
 - SER
 - Configuration (e-Fuses + reg-Bank)
 - Control Logic
 - ADC
 - PID
 - I2C Slave
 - I2C Masters
 - I2C Slave
 - I2C Port
 - I2C Port

- **I2C Masters**
 - I2C - Port

- **I2C Ports**
 - aIn[7:0]
 - I0[15:0]

- **I2C Slaves**
 - I2C Port

- **ADC**

- **PID**

- **I2C Port**

- **I2C Port**

- **LR**
 - LpGBTIA
 - LpGBLD

- **Phase - Shifter**

- **EOM**

- **Ref CLK (optional)**

- **2.56 Gbps**

- **5.12 Gbps or 10.24 Gbps**

- **160 Mbps to 1.28 Gbps ports**

- **One 80 Mbps port**

- **data-down**

- **data-up clock**

- **eLink**

- **2.56 Gbps clocks**

- **5.12 Gbps or 10.24 Gbps clocks**
The order of operations is important

[Once again] We avoid the details here since you will not have to worry with them, they will be “handled” by lpGBT-FPGA
eLink Groups and Serialization

FE Module

Phase - Shifter

LpGBT

Control Logic

Configuration (e-Fuses + reg-Bank)

ADC

PID

I2C Slave

I2C Masters

Phase - Aligners & Ser/Des for E-Ports

E - Port

Fe, Module

Fe, Module

Fe, Module

GBT – SCA

2.56 Gbps

Ref CLK (optional)

5.12 Gbps

or

10.24 Gbps

2.56 Gbps

LpGBTIA

LpGBLD

160 Mbps to 1.28 Gbps ports

One 80 Mbps port

I2C Masters

I2C Slave

I2C Port

I2C Ports

I2C Port

I2C Ports

ADC

PID

I2C Slave

I2C Masters

aln(7:0)

IO(15:0)

I2C Port

I2C Ports

2.56 Gbps

5.12 Gbps

or

10.24 Gbps

LpGBT

DSCR

DEC

DeSER

LR

SCR

ENC

SER

LpGBTIA

LpGBLD

Ref CLK (optional)

5.12 Gbps

or

10.24 Gbps

2.56 Gbps

Paulo.Moreira@cern.ch
eLink Tx Groups & Serialization

• Tx eLinks are “clustered” in groups of 4 (similar to RX eLinks):

• The data rate of each group can be set independently:
 80 / 160 or 320 Mbps

• The number of available eLinks within a group is determined by the Group data rate;

• [Similar to the uplink] Tx eLinks are associated with specific bits within the downlink frame (geographical addressing):
 • The user knows, from the position of the bits (and the selected data rate) in the frame, to which eLink the data will be serialized to.

• EC outputs (pins: EOUTECP / EOUTECP) are fixed data rate (80 Mbps) that can be used for Experiment Control in Transceiver mode or participate in the control of the ASIC itself in Simplex TX or RX modes

<table>
<thead>
<tr>
<th>Output eLinks (down-link)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth [Mb/s]</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>Maximum number</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>
eLink Tx “Mirror” function

- To help implementing broadcast of data to the frontends, a “mirror” function is implemented for the Tx eLinks:
 - Call it “buffering” if you prefer!
- Since the number of active Tx eLinks depends on the selected data rate, “unused” transmitters can be used to “repeat” the data of the active channels
- This called “mirror” function
- The possibilities are:
 - 80 Mbps:
 - No mirroring
 - 160 Mbps:
 - Each channel is [can be] available on 2 outputs
 - 320 Mbps:
 - Each channel is [can be] available on 4 outputs
eLink Line Transmitter (eTx)
eLink Driver

- Data rate:
 - Up to 1.28 Gbps

- Clock frequency:
 - Up to 1.28 GHz

- Driving current:
 - Programmable: 1 to 4 mA in 0.5 mA steps

- Receiving end termination:
 - 100 Ω

- Voltage amplitude in 100 Ω:
 - 100 mV to 400 mV (SE PP amplitude)
 - 200 mV to 800 mV (DIFF PP amplitude)

- Common mode voltage:
 - 600 mV

- Selectable polarity

- Pre-emphasis:
 - Driving current: 1 to 4 mA in 0.5 mA steps
 - Pulse width:
 - Externally timed
 - Self timed: 120 ps to 960 ps in steps of 120 ps
 - Clock timed: T_{bit} / 2

Macro cell, available for front-end designers (upon request)
eTx Functionality

Programmable delay line allows to generate pre-emphasis pulse widths between 120 and 960 ps

- Controls the polarity of the driver
- Half bit period pre-emphasis pulse width
- Pre-emphasis self-timed pulse width selectable
- Pre-emphasis mode selectable
- Pre-emphasis amplitude programmable

Controls the polarity of the driver

Programmable delay line

Half bit period pre-emphasis pulse width

Pre-emphasis self-timed pulse width selectable

Pre-emphasis mode selectable

Pre-emphasis amplitude programmable

TWEPP 2018
Paulo.Moreira@cern.ch
No Pre-Emphasis
Driver Strength = 2 mA
Pre-Emphasis Strength = 0 mA
Pulse width = n.a.

With Pre-Emphasis
Driver Strength = 2 mA
Pre-Emphasis Strength = 2 mA
Pulse width = T/2

Data: PRBS 7
Data rate: 2.56 Gb/s
$C_L = 2 \times 5 \text{ pF}$
Note about eLink Output Pin Names

EDOUTGCP

Output from the IpGBT

Group number: 0, 1, 2 and 3 (there are 4 groups)

Pin Polarity: P – Positive, N – Negative
(Remember: polarity can be inverted at the output of the corresponding eTx)

Channel number within a group: 0, 1, 2 or 3 (there are 4 eLinks associated with every group)

Example: EDOUT32N – eLink data output group 3 channel 2 negative polarity pin
eLink Clocks
eLink Clocks

• Same drivers as for the Tx data eLinks, thus:
 • Programmable: polarity, driving strength and pre-emphasis

• 4 programmable Phase/Frequency clocks:
 • 4 independent
 • Phase resolution: 50 ps
 • Frequencies: 40 / 80 / 160 / 320 / 640 / 1280 MHz

• eLink Clocks:
 • 28 independent
 • Fixed phase
 • Frequency programmable
 • Frequencies: 40 / 80 / 160 / 320 / 640 / 1280 MHz
Experiment Control and Environment Monitoring

- FE Module
- E-Port
- Phase - Shifter
- LpGBT
- DSCR
- DEC
- DeSER
- LR
- CLK Manager
- CDR/PLL
- SCR
- ENC
- SER
- LD
- Control Logic
- Configuration (e-Fuses + reg-Bank)
- ADC
- PID
- I2C Slave
- I2C Masters
- I2C Port
- I2C Ports
- 2.56 Gbps
- 5.12 Gbps
- 10.24 Gbps
- Ref CLK (optional)
- LpGBTIA
- LpGBLD
- 160 Mbps to 1.28 Gbps ports
- One 80 Mbps port
- GBT – SCA
- data-down
- data-up
- clock
- eLink
- data-in [7:0]
- data-out [15:0]
- 160 Mbps
- ADC
- PID
- I2C Slave
- I2C Masters
- 2.56 Gbps
- 5.12 Gbps
- 10.24 Gbps
- 49
Digital

• Three I2C Masters:
 • Three general purpose masters
 • But one typically dedicated to control the laser driver (LDQ10)
 • Transfer rates: 100 KHz, 200 KHz, 400 KHz, 1 MHz
 • 7-bit and 10-bit addressing standards
 • Single-byte and multi-byte I2C read/write bus operations
 • Masters themselves controlled by:
 • The I2C slave port (always possible)
 • The IC – channel (only possible in transceiver mode)
 • The EC – port (Only possible in Simplex RX or TX mode)

• General Purpose I/O
 • 16-bit I/O port
 • Optional internal pull-up / pull-down resistors
 • Controlled by the same means as the I2C masters

• Output reset pin
 • Active low
 • Programmable pulse duration
Analogue Peripherals

- **10 bit ADC**
 - Core: fully differential SAR
 - 8 channels (single ended or differential)
 - Voltage amplifier (x1 .. x32)
 - Sampling rate up to ~ 1MSps (limited by the control channel)
 - Monitoring of internal signals (like VDD)

- **12 bit voltage DAC**
- **8 bit current DAC**
 - can be attached to any analog input
 - range: 0-1mA (8bit)

Temperature sensor
Example: Using an External Temperature Sensor

- ADC
- InPSel[3:0]
- x1-x32
- GainSel[1:0]
- dataOut[9:0]
- ADC
- Vref
- DACout
- Temp Sensor
- Vref generator
- 8-bit Current DAC
- 12 bit voltage DAC

X = 0, 1, … 7

PT100

\[\Delta V \]
Package

• Small Footprint BGA package:
 • Size: 9 mm x 9 mm x 1.25 mm
 • Fine Pitch: 0.5 mm
 • Pin count: 289 (17 x 17)

• Routing of high speed signals optimized and simulated
 • Very small loss @ 10GHz
 • Models used for line driver simulations
IpGBT FPGA

• The IpGBT-FPGA provides a back-end counterpart to the IpGBT ASIC

• Warning:
 • “Strategy” departures from that used for the GBT-FPGA
 • Not a single generic “block”;
 • But a set:
 • Of modules;
 • Of implementation examples;
 • Of reference notes.
 • To help the user designing its own system!
IpGBT Simulation Model

• The IpGBT model (will be) available to the users:
 • To simplify the design and verification of front-end (ASIC) and back-end (FPGA) systems

• Contains all essential features related to the data transition and slow control interfaces:
 • Some of the chip’s analogue features are not modelled:
 • e.g.: pre-emphasis, equalization, analogue I/O (ADC,DAC), pull up/down resistors;

• “Distributed” as one System Verilog file, compatible with:
 • Cadence Incisive
 • Mentor Questa
 • Synopsys VCS
“Additional” Slides
Using the eRx(s)

Equalization:
• Should only be used if needed (low bandwidth transmission line)
• Only effective for the high bit rates
• Equalization has (only) three coarse settings
• User must choose the most appropriate!
• This requires a verification / scanning procedure from the user:
 a) Ideally the front-end designer implements a PRBS7 that the IpGBT can automatically verify;
 b) The user verifies the transmitted data at the counting room;
 c) A detailed scan procedure will also be proposed by the IpGBT team...

eRx Check list:
• Turn ON the receivers corresponding to the eLinks in use.
 • Obviously the others should be OFF
• Choose the polarity (non-invert / invert)
• Turn on the termination:
 • Most likely the case (unless the chip in a multiple drop configuration – unlikely, or AC coupling to be optimized)
• Enable the internal bias, if using AC coupling
• Choose the appropriate equalization setting
The user must:

• Enable the line driver for Transceiver and Simplex Transmitter modes;
• Enable the pre-emphasis if needed;
• Set the amplitude of the:
 • Modulation current;
 • Pre-emphasis current.
• Set the pre-emphasis pulse duration;
• It is possible to invert HS output polarity to simplify the PCB design:
 • The inversion is done @40M (before the Serializer) at the frame level.