<table>
<thead>
<tr>
<th>Supported Technologies</th>
<th>Global Foundries</th>
<th>TSMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>250nm CMOS 6SF</td>
<td>Legacy designs</td>
<td>130nm CMOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cost efficient technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for Analog & RF designs</td>
</tr>
<tr>
<td>130nm CMOS 8RF-DM</td>
<td>Low cost technology for Analog & RF designs</td>
<td>65nm CMOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High performance technology for dense designs</td>
</tr>
<tr>
<td>130nm CMOS 8RF-LM</td>
<td>Deprecated</td>
<td>28nm CMOS</td>
</tr>
<tr>
<td></td>
<td>Low cost technology for Large Digital designs</td>
<td>Under Evaluation</td>
</tr>
<tr>
<td>130nm BiCMOS 8WL-HP</td>
<td>Deprecated</td>
<td>High density, low power</td>
</tr>
<tr>
<td></td>
<td></td>
<td>technology for future designs</td>
</tr>
</tbody>
</table>

- **250 nm**
- **130 nm**
- **65 nm**
- **28 nm**
Design kits support TSMC-65nm

Metal stacks available:

- 6+1 metal stack
 4 thin – 1 thick – 1 UltraThick – RDL

- 7+1 metal stack ← NEW
 5 thin – 1 thick – 1 UltraThick - RDL

- 9+1 metal stack
 7 thin – 1 thick – 1 UltraThick - RDL

Standard cell libraries available:

- 7 tracks Std-V_T
- 7 tracks Low-V_T ← NEW
- 7 tracks High-V_T ← NEW
- 9 tracks Std-V_T
- 9 tracks Low-V_T ← NEW
- 9 tracks High-V_T ← NEW
- 12 tracks Std-V_T ← NEW
- 12 tracks Low-V_T ← NEW
- 12 tracks High-V_T ← NEW

6+1 Metal Stack
Design kits support TSMC-130nm

Metal stacks supported:
- 7+1 metal stack
 - 5 thin – 1 thick – 1 UltraThick – Aluminum RDL

Standard cell libraries available:
- 9 tracks Standard-V_T
tcb130ghp
- 9 tracks Low-V_T
tcb130ghplvt
- 9 tracks High-V_T
tcb130ghphvt

7+1 Metal Stack
Supported design tools for CERN Design-Flow:

- **CONFRMAL** (equivalence checking) **CONFORML_16.10.240**
- **QRC** (Extraction) **EXT_15.26.000**
- **GENUS** (Synthesis) **GENUS_16.12.000**
- **VIRTUOSO** (Analog design) **IC_6.1.7.704**
- **INCISIVE** (Digital simulation) **INCISIVE_15.20.010**
- **INNOVUS** (Place and route) **INNOVUS_16.13.000 / 17.12**
- **MMSIM** (Analog Simulation) **15.10.627**
- **PVS** (Physical Verification) **15.17.000**
- **TEMPUS** (Timing closure) **SSV_16.13.000**
- **VOLTUS** (Power closure) **SSV_16.13.000**
- **UVM** (verification methodology) **VIPCAT_11.30.044_UVM**
Digital-on-top flow - Available scripts

Digital design flow scripts:

- For **synthesis** with Genus
- Digital **back-end flow** with Innovus
 - For wirebonded designs
 - For Flip-Chip (bumped) Peripheral-IO Designs: ← Under development (Available soon)
 - For Flip-Chip (bumped) Area Array Designs: ← Development will follow (Available soon)
- **Timing signoff** with Tempus
- Activity based **power verification** with Voltus
- VCD based **Power verification** with Voltus ← Under development (Available soon)
Macro-blocks available TSMC 65nm

- **Rad-Tolerant SRAM** \textit{Silicon Proven}
 - Compiled at request
 - Only Standard-V_T and 4 metal levels used
 - Operation 80 MHz at 1.2 V
 - Dual-port
 - TID and SET tolerant

- **TSMC Static RAM** \textit{Silicon Proven}
 - Compiled at request

- **E-Fuse IP block** \textit{Silicon Proven}

- **Rad-Tolerant Bandgap Reference Voltage generator** Diode Based \textit{Silicon Proven}

- **Rad-Tolerant Reference Voltage generator** DTN MOS Based \textit{Silicon Proven}

- **Rad-Tolerant ESD structures for Periphery IO** \textit{Silicon Proven}

- **Rad-Tolerant ESD structures for Area array IO**

- **Rad-Tolerant CERN IO pads - CMOS driver/receiver 1.2V** \textit{Silicon Proven}

- **Rad-Tolerant SLVS Drivers/Receivers** \textit{Under development}

- **Seal ring**
Macro-blocks available TSMC 130nm

- Rad-Tolerant SRAM *Silicon Proven*
 - Compiled at request
 - Only Standard-V_T and 4 metal levels used
 - Operation 80 MHz at 1.2 V
 - Dual-port
 - TID and SET tolerant

- E-Fuse IP block *Silicon Proven*

- Rad-Tolerant Bandgap Reference Voltage generator *Silicon Proven*

- Rad-Tolerant ESD structures for Periphery IO *Silicon Proven*

- Rad-Tolerant CERN IO pads - CMOS driver/receiver 1.2V *Under development*

<table>
<thead>
<tr>
<th>Word size</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mem Depth</td>
<td>64</td>
<td>16K</td>
</tr>
</tbody>
</table>
Macro-blocks available GF 130nm

- Radiation Tolerant ESD structures for IO pads *Silicon Proven*
- Radiation Tolerant 12-bit, 32-input monitoring ADC *Silicon Proven*
- LVDS drivers and receivers *Silicon Proven*
- sLVDS drivers and receivers *Silicon Proven*
- SRAM generator (40MHz, dual-port synchronous)
- eFuse (1- and 8-bit; 3.3V-10mA-burn in <1ms for 8 bits) *Silicon Proven*
- Bandgap (diode based, current output 597 ± 4 mV over p,V,T) *Silicon Proven*
- DAC: 8-bit, current output, 40nA LSB *Silicon Proven*
Design kits, Macro blocks and Digital flow – Get access

CERN ➔ Development of Mixed Signal PDK and digital on-top design flow
Support for the Digital-On-Top design flow

IMEC ➔ Distribution of the CERN Mixed Signal PDK and support of the native foundry PDK

To get access to the **Design Kits and PDK**:
- For already inscribed institutes ➔ Contact epsec@imec.be
- For new users ➔ Contact foundry.services@cern.ch

To get access to the **Digital design flow** scripts:
- For inscribed institutes ➔ Download: https://espace.cern.ch/asics-support/
- For new users ➔ Contact foundry.services@cern.ch

To get access to the **Macro-Blocks**:
- For inscribed institutes ➔ List is available at: https://espace.cern.ch/asics-support/
- For new users ➔ Contact foundry.services@cern.ch
Website:

- Distribution of CERN digital flows
- Training material and workshops for digital design tools
- Information about the TSMC130nm and 65nm technologies
- Distribution of the Global Foundries 130nm design kit
- Information about the available macro cells

Coming soon:

- Blog/Forum where you can find and share recommendations about Analog and Digital design. The forum is under construction and will be available in the following months.

Access:

- Link: https://espace.cern.ch/asics-support/
- To get access contact: foundry.services@cern.ch