Phase Noise Studies on the Si5345 PLL

September 19, 2018

Radovan Blažek, Jeroen Hegeman, Jan Troska

With help from CERN EP-ESE
High-Precision Timing Working Group @ TWEPP18
First studies done with components chosen (on paper) for the CMS Phase-2 DAQ and TCDS Hub (DTH).
(See also ‘Design and development of the DAQ and Timing Hub for CMS Phase-2’ on Thursday morning.)

Intention is to:

• Validate choice of jitter attenuator (Si5345)
• Validate combination of jitter attenuator and crystal/TCXO as Si5345 reference clock
• Gain experience with the SiLabs devices
• etc.
Measurement setup

Input clock source 10 MHz Rubidium clock source: SRS FS725
Signal source analyzer Agilent Technologies E5052B
Climate chamber CTS T-65/50
Software Based on (Python) libraries provided by EP-ESE
Test procedures

Two kinds of tests:

- Si5345 evaluation board at room temperature, varying PLL bandwidth or generated output frequency
- Si5345 evaluation board running with fixed PLL bandwidth and output frequency, varying ambient temperature

Notes:

- Si5345 always running in locked mode
- Temperature always required to be stable before measurements
- Climate chamber always switched off before measurements
Intermezzo: phase noise

- Low frequency variations = wander
- High frequency variations = jitter
- In general: higher frequencies → higher phase noise
- Phase noise integral ≈ RMS (TIE) jitter

![Phase Noise Graph](image-url)

- SRS FS725
- 10 MHz
- spec.
First a look at the generator itself

- **SRS FS725**

- **Rhode&Schwarz SMC100A**

- *Note* the difference in vertical scales
- Generator phase noise in principle behaves as one would expect, apart from some features (probably related to the setup)
- All measurements done for different output frequencies ranging from 40.08 MHz (i.e., the LHC bunch-crossing frequency) to 320.64 MHz (i.e., the lpGBT FPGA reference clock frequency)
Changing PLL bandwidth (at fixed output frequency)

- **f = 40.08 MHz**
- **f = 320.64 MHz**

Phase noise (dBc/Hz) vs. Frequency offset (Hz)

- 10Hz
- 100Hz
- 1000Hz
- 4000Hz

- 1 10 100 1 k 10 k 100 k 1 M 10 M
Changing output frequency (at fixed PLL bandwidth)

 PLL BW = 10 Hz
- 40.08 MHz
- 80.16 MHz
- 160.32 MHz
- 240.48 MHz
- 320.64 MHz

 PLL BW = 4 kHz
- 40.08 MHz
- 80.16 MHz
- 160.32 MHz
- 240.48 MHz
- 320.64 MHz
• Phase noise much less sensitive to ambient temperature than expected
• In general: jitter cleaner junction temperature $\approx 10 \, ^\circ C$ higher than ambient
• NOTE: Did not try (steady or fluctuating) air flows across jitter cleaner
Replacing the crystal with a TCXO

- As expected: TCXO better at lower frequencies than at higher
- Not as expected: TCXO gives worse performance than simple crystal, even at low frequencies
Replacing the crystal with a TCXO

- As expected: TCXO better at lower frequencies than at higher
- *Not* as expected: TCXO gives worse performance than simple crystal, even at low frequencies
Something more realistic

Chaining two jitter cleaners (à la TTC machine interface and DTH, for example): Si5345 driven by Si5344 (on its own EVB):

- Stand-alone vs. slaved from the SRS FS725
- Generating an intermediate frequency of 40 MHz vs. 320 MHz

![Graph showing phase noise and frequency offset for Si5344 configurations.](image)
• The ‘free-running’ phase noise curves clearly show the ‘crystal shape’
• The bump in phase noise for the 40 MHz ‘slaved’ curve clearly needs optimizing for use in Phase-2 CMS
• For the moment: Si5344 and Si5345 had the same PLL bandwidth. There is (configuration) phase space to be explored here.
Conclusions and plans

• With the SiLabs devices it is easy to generate a good-quality clock. It is even easier to accidentally reduce the quality...

• The Si5345 is much less sensitive to ambient temperature than expected

• Ergo: may not need TCXOs for Si5345 reference clocks, but simple crystals

• All to be verified with real (DTH P1) hardware

• More importantly: start looking into channel-to-channel phase stability

A more complete and descriptive document, with more details and figures, is available on the HPT WG web site:
Thank you