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At the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan, the double-
sided silicon strip sub-detector of the Belle II experiment is read out by 1748 APV25 chips.
FPGAs perform several calculations on the digitized signals. One of them will be "Hit Time
Finding": the determination of the time and amplitude of the signal peaks of each event in real
time using pre-programmed neural networks. This work analyses the possibility, precision and
reliability of these calculations depending on various parameters.

Topical Workshop on Electronics for Particle Physics (TWEPP2018)
17-21 September 2018
Antwerp, Belgium

∗Speaker. ** First authors.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:Richard.Thalmeier@oeaw.ac.at
mailto:Hao.Yin@oeaw.ac.at


Machine learning: Hit Time Finding with a Neural Network R. Thalmeier, H. Yin

1. Introduction

At the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan, the Belle II
experiment [1] will explore the asymmetry between matter and antimatter and search for new
physics beyond the standard model. One of its inner tracking systems is the Silicon Vertex Detec-
tor (figure 1) [2], which consists of 172 orthogonal double-sided strip sensors. They are arranged
cylindrically in four layers around the Pixel Detector to measure the tracks of the collision products
of electrons and positrons.

Figure 1: The Belle II Detector Figure 2: APV25 calibration pulse output

These sensors are read out by 1748 APV25 chips [3], each for 128 silicon strips. They have
a shaping time of about 50 ns and output a time-multiplexed signal for each event and strip. The
analog data are then sent out of the radiation zone to 48 custom-built VME modules which convert
them to digital, where 3 or 6 values per event of each strip are sampled at a clock of 31.8 MHz.
FPGAs then compensate line signal distortions and reflections using digital finite impulse response
(FIR) filters and detect data frames from the incoming stream. Then they perform pedestal subtrac-
tion, common mode correction and zero suppression. And finally "Hit Time Finding", which will
be implemented according to the findings below into the FPGA firmware [4]: the determination of
time and amplitude of the signal peaks of three selected samples of the APV25 outputs (figure 2)
of each event on each silicon strip in real time using pre-trained neural networks. Shown in this
paper are preliminary studies to explore the possibility to implement a hit time finding algorithm
in FPGAs .

2. The Hit Time Finding Network

The APV25 has a so-called internal calibration circuit that is able to inject a configurable
amount of charge into each pre-amplifier. The injected signal can be delayed in steps of 1/8th
of a clock cycle (∼ 3.9ns). By scanning those parameters and trigger latency we can probe the
calibration pulse at various timings and amplitudes (figure 3). The gray lines mark the training
range, where the first frame signal is located at; the two following consecutive signals are ∼ 32ns
apart. For the neural network [5] training we opted to use the averaged calibration pulse. Single
strip pulses are used to verify the range of the output in order to check for over training. Figure 5
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shows this hit time (T) / amplitude (A) finding network, an additional verification network, which
re-calculates optimal three APV25 samples for the given hit time and amplitude, and the algorithm
for the control flow.
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Figure 3: APV25 calibration pulses with differ-
ent amplitudes
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Figure 5: Control Flow

Both networks are optimized using online training: at each sample the weights are adjusted.
The final accuracy of both networks is strongly dependent on the layout, see figure 6 and 7. With
two hidden layers with four nodes each (figure 4), softsign activation functions for the inner layers
(efficient FPGA usage) and linear functions for the output layers the precision are sufficient.

Figure 8 shows the accuracy of the hit-time/amplitude network with single strip data. Each
strip has a slightly different amplitude, but overall the shapes of the calibration pulses are similar.
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Figure 6: Training error on amplitude using av-
eraged calibration pulse
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Figure 7: Training error on hit time using aver-
aged calibration pulse

The network is able to precisely estimate the hit time as long as the maximum signal is located at
the second frame. However the accuracy drops when the maximum moves to the first frame, which
is indicated by the red vertical line in figure 8. The verification network with hit time and amplitude
as input is also able to generate strip signals similar to the training data (figure 9).

Once both networks have been sufficiently trained we applied data taken during BEAST
phase 2 with particle collisions.

0

1000

2000

3000

4000

5000

0 2 4 6 8 10 12 14 16 18 20 22 24
hit time [3.9 ns]

15

10

5

0

5

10

de
vi

at
io

n 
[3

.9
 n

s]

3.1.2.1-HitTime
Entries 147456
Mean x 12
Mean y 0.1798
Std Dev x 6.922
Std Dev y 1.676

signal amplitude between
1st and 3rd frame

en
tri

es

Figure 8: Hit time error after training with aver-
aged calibration pulses
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Figure 9: Generated pulses vs averaged calibra-
tion pulses

3. Results

The verification network shows some deviation between the real-particle pulses and the cal-
ibration pulses, whereby the most visible effect has been observed at the lower amplitudes (fig-
ure 10); it is also seen in the hit-time distribution (figure 11), but no strong signal shape dependen-
cies are present here. During the phase 2 run number 783 the beam bunches were synchronized
with the APV25 clock in such a way that during one clock cycle two distinct bunches were able to
collide. Due to trigger jitter we can also see smaller peaks at different trigger arrivals relative to the
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Figure 10: Signal deviations with different am-
plitudes
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Figure 11: Signal deviations with different hit
times

APV25 clock. The distances between each peak show good agreement with the bunch spacing at
∼ 16ns (figure 12). The preliminary result also shows good conformity with the offline software
analysis, which uses a center-of-gravity algorithm to determine the hit-time distribution (figure 13,
which is before time-calibration).
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Figure 13: Hit time distribution using center-of-
gravity algorithm
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