
Ethernet-based slow control system for parallel
configuration of FPGA-based front-end boards

Wojciech M. Zabolotny∗

Institute of Electronic Systems, Warsaw University of Technology
E-mail: wzab@ise.pw.edu.pl

The Ethernet network is a good control interface for distributed measurement systems. The de
facto standard in HEP experiments is IPbus. The experiences from using IPbus resulted in the
proposal of a new Ethernet-based control interface optimized for quick parallel configuration
of multiple systems. The system ensures reliable delivery of control commands and responses.
The adverse effects of the Ethernet round-trip latency are minimized by grouping the multiple
commands in a single network packet, including the basic handshake operations like waiting
with timeout until a specified condition is met. The performance may be increased by using
multiple packets “in flight”. Usage of Layer 2 Ethernet frames minimizes the FPGA resource
consumption. Implementation of the software part in Linux kernel space reduces dependency on
specific software packages and libraries.

Topical Workshop on Electronics for Particle Physics (TWEPP2018)
17-21 September 2018
Antwerp, Belgium

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:wzab@ise.pw.edu.pl


Ethernet-based slow control system Wojciech M. Zabolotny

1. Introduction1

The idea to use the Ethernet interface to control the measurement systems is well established.2

Currently, the IPbus [1, 2] is the Open Source standard for such control. It is mature, well tested3

and used in many applications. However, for certain use-cases the design of IPbus is unnecessar-4

ily complicated. Also for certain control operations its performance may be reduced. This work5

presents E2Bus, an experimental alternative solution aimed at the reduction of resource consump-6

tion and improvement of achievable performance.7

2. Main IPbus features8

For communication with hardware, IPbus uses the User Datagram Protocol (UDP) over IPv49

via 1Gb/s Ethernet link. That allows handling of packets in the user space at the computer side.10

UDP packets are routable. However, due to possible losses of the packets, this feature is rather11

not used. The reliable operation of IPbus is assured by the ControlHub implemented in Erlang-12

[3], which also converts the UDP-based communication into the TCP-based one. That also allows13

remote access via LAN or WAN (including tunneling if needed). Communication with the user ap-14

plications written in C++ or Python is provided by the uHAL library. Standard makefiles for IPbus15

software support Scientific Linux and Centos. Due to compiler and library dependencies, it may16

be difficult to compile it for another Linux distributions. To increase performance, IPbus allows17

combining multiple commands in a packet and supports simple Read-Modify-Write operations.18

3. Proposed improvements and implementation of E2Bus19

The protocol support in the FPGA may be simplified by usage of Layer 2 (L2) Ethernet frames20

instead of UDP. That requires that the FPGA and the nearest computer system (the “End Con-21

troller” (EC)) are in the same L2 network segment, which is also good for security reasons. For22

best performance, the L2 frames should be processed in the loadable kernel module. That is es-23

pecially important for quick handling of acknowledgments and retransmission of not confirmed24

frames which is essential for reliable communication. That approach was successfully used in25

FADE-10G protocol [4]. Communication between the machine performing the control algorithm26

(the “User Controller” (UC)) and EC should use the standard and simple TCP-based protocol. The27

ZeroMQ [5] was chosen for that purpose. Interfacing between the driver and ZeroMQ protocol28

may be provided by a simple C-based application. That minimalistic approach enables using a29

very simple Linux embedded system as an EC, instead of a more powerful machine running Con-30

trolHub in IPbus. The IPbus concept of sending multiple commands in a single packet to increase31

performance may also be extended. Performance of typical control algorithms may be significantly32

improved by performing simple handshake-related operations in the E2Bus IP core (EBC) [6]. The33

related commands are described in section 3.4. The last improvement is adding of interrupts sup-34

port. In IPbus the controlling software must poll the hardware. E2Bus removes that limitation. The35

possible architecture of E2Bus-based control system is shown in Figure 1, and implementation of36

different components is described in the next subsections.37

1



Ethernet-based slow control system Wojciech M. Zabolotny

Controlled
FPGA board

E2Bus
IP core Linux-based

ES or router

E2Bus
Gateway

F
ire

w
al

l/V
P

N
(o

pt
io

na
l)

E2Bus
Kernel
driver

Proprietary E2Bus
protocol

Private protected 
Network (Ethernet)

TCP/IP
network

User Controller (UC)
(PC or server)

LAN or WAN Network

End Controller (EC) ZeroMQ Protocol

Controlled
FPGA board

E2Bus
IP core

Controlled
FPGA board

E2Bus
IP core

Figure 1: Architecture of the E2Bus based control system.

Response data
(optional)

Uplink packet
 (from FPGA)

Filler
(if needed)

IRQ status
(optional)

CMD ACKs
(optional)

Ethernet
header

CRC

Command set
(optional)

RESP ACKs
(optional)

Ethernet
header CRCDownlink packet

(to FPGA) 

Protocol
header

Protocol
header

Filler
(if needed)

Figure 2: Packets used by the E2Bus protocol.

3.1 E2Bus network protocol38

Communication between the EC and controlled FPGA uses L2 Ethernet frames with protocol39

ID set to 0xe2b5. The layout of the packets is shown in Figure 2. The command sets and response40

data sets are identified with 15-bit sequence numbers. Different sections of the packets (shown in41

Figure 2) are uniquely marked so that the presence of the particular section can be easily detected,42

and its content found. The uplink packets are sent if there is an active interrupt, if a new command43

set is received, or if there exists any unsent or unconfirmed response set. The delay between44

consecutive retransmissions and interrupt request (IRQ) notifications is configurable.45

3.2 Implementation of End Controller46

The EC is a Linux-controlled computer with installed e2bus.ko kernel driver used by a simple47

C-implemented E2Bus gateway (e2bus_gw) that provides communication between the UC and EC48

via the ZeroMQ protocol [5]. If control via a public network is needed, additional encrypted tunnel49

or VPN may be added. The execution of the commands uses the ZeroMQ PAIR pattern, while50

notifications about interrupts use the ZeroMQ Publish/Subscribe pattern.51

3.3 Implementation of the E2Bus kernel driver52

To minimize the acknowledgment and retransmission latency, the kernel driver installs its53

private protocol handler in the Linux kernel. Communication with the user space application54

(usually the e2bus_gw) is done via ioctl calls. Connection with the FPGA board is started with55

E2B_IOC_OPEN ioctl. It also informs the EBC about the MAC of the EC and resets the EBC56

(without resetting of controlled peripherals). When the board is connected, the user space ap-57

plication may submit the list of commands for execution. The list should not be longer than58

1024 bytes. It may be submitted for synchronous (E2B_IOC_SEND_SYNC) or asynchronous59

(E2B_IOC_SEND_ASYNC) execution. The latter allows submission of multiple sets in a sequence60

for maximal performance. The application may wait until the command set is executed using61

2



Ethernet-based slow control system Wojciech M. Zabolotny

Ethernet
transmitter

Ethernet 
link

Ethernet
receiver

Command Buffer (DP-RAM)

Responses Buffer (DP-RAM)

Resp ACK Buffer (DP-RAM) C
om

m
an

d
co

nt
ro

lle
r

Lo
ca

l b
us

co
nt

ro
lle

r

IRQ status

CMD ACK Buffer (FIFO)
Ethernet

PHY

Local bus
(WB, AXI)

Figure 3: Structure of the E2Bus IP-core.

E2B_IOC_RECEIVE ioctl. The standard poll function is also supported for single-threaded e2bus62

gateways. To minimize the copying of data, the received response is written to the buffer provided63

by the user space application and mapped using the get_user_pages function after the appropriate64

E2B_IOC_SEND_xxxx call. The ioctl E2B_IOC_WAIT_IRQ function allows waiting in a separate65

thread for interrupts.66

3.4 Implementation of E2Bus IP core67

The architecture of the EBC responsible for the FPGA side of the E2Bus protocol is shown68

in Figure 3. The most important part of the solution is the command processor that executes the69

whole sets of commands and generates the response. When the response is too long to fit in a70

single packet, the packet is transmitted, and filling of the next packet starts. At the end of the last71

response packet, there is a status of the operation and the address of the last executed command.72

In case of an error, the next commands are not executed, and next command sets also are rejected.73

That error state is cleared only when a command set beginning with a special ERROR-CLEAR74

operation is received. That ensures reliable operation in the mode with multiple packets “in flight”.75

The Command Controller supports five operations: READ and WRITE 1, READ-MODIFY-WRITE76

2, READ-AND-TEST 3, and MULTIPLE-READ-AND-TESTS 4.77

4. Results78

The first “proof of the concept” implementation of the proposed E2Bus system has been tested.79

The E2Bus IP core has been implemented as ISE project for Spartan 6 (2691 LUTs, 9 BRAMs)80

and as Vivado project for Artix 7 (2829 LUTs, 6 BRAMs) FPGA. Versions for 1 Gb/s and 10081

Mb/s have been prepared. The E2Bus kernel driver and E2Bus gateway have been compiled and82

1READ or WRITE defines a single or multiple (up to 4096) reads or writes. The read source address and write desti-
nation address may be incremented, decremented or constant, the write source address may be constant or incremented.
Each read appends the received value to the response. The whole WRITE command including data must fit in a single
1024-byte block. The WRITE command produces no response.

2READ-MODIFY-WRITE modifies the contents of a register. Possible operations include: Increment, Decrement,
Add, Subtract, And, Or, Xor, Not. The original value may be appended to the response.

3READ-AND-TEST checks for the condition. Possible tests include: Signed/Unsigned less/greater than, Compare,
And/Or with mask and compare. If the condition is not met, the calculated value is written to the response, and an error
is generated.

4MULTIPLE-READ-AND-TESTS checks the same condition as READ-AND-TEST, and if it is not met, repeats the
test up to the programmed number of times with the programmed delay. If the test is finally passed, the number of
repetitions left is written to the response. If not, the value calculated in the last repetition is written to the response, and
error is generated.

3



Ethernet-based slow control system Wojciech M. Zabolotny

tested on the Intel x86 and ARM platforms. The sources were converted to Buildroot packages to83

allow easy testing on embedded platforms. The correct operation of the system with a simple set84

of Wishbone slaves has been proven. The library for automatic generation of command sets and85

interpretation of responses (an equivalent of IPbus uHAL library) is still in preparation. E2Bus is86

released as an Open Source project [7].87

5. Conclusions88

The proposed E2Bus system may be used to build distributed Ethernet-based control systems89

for FPGA-based boards. Usage of Layer 2 Ethernet frames simplifies the FPGA IP core. The90

low-latency reliable transport is implemented in the kernel space using the own packet handler.91

Implementation of the whole system in the loadable kernel module and in simple ZeroMQ server92

enables the use of even simple Linux-based routers as End Controller nodes in the system. Parallel93

control of multiple boards is supported by the following features:94

• Multiple packets with subsequent commands sets may be submitted for execution. The next95

set is processed, while the results produced by the previous ones are transmitted.96

• Simple handshake operations, like waiting for certain bits to be set or cleared are executed97

locally by the E2Bus IP core, without generating additional latency and network traffic. Error98

conditions stop the execution of the whole submitted set of commands. Detailed information99

about the error is included in the response.100

• Interrupts support reduces the need for polling of the controlled hardware101

The proposed solution is still not mature. However, the tests of the first implementation have proven102

the correctness of the concept. Further tests and cleanup of the code are required.103

6. Acknowledgment104

Work was supported by statutory funds of Institute of Electronic Systems.105

References106

[1] C. G. Larrea, K. Harder, D. Newbold, D. Sankey, A. Rose, A. Thea et al., IPbus: a flexible107

Ethernet-based control system for xTCA hardware, Journal of Instrumentation 10 (Feb., 2015)108

C02019–C02019.109

[2] R. Frazier, G. Iles, D. Newbold and A. Rose, Software and firmware for controlling CMS trigger and110

readout hardware via gigabit Ethernet, Physics Procedia 37 (2012) 1892–1899.111

[3] “Erlang programming language.” http://www.erlang.org.112

[4] W. Zabolotny, Low latency protocol for transmission of measurement data from FPGA to Linux113

computer via 10 Gbps Ethernet link, Journal of Instrumentation 10 (July, 2015) T07005–T07005.114

[5] “ZeroMQ distributed messaging.” http://zeromq.org/.115

[6] W. M. Zabołotny, Improvement of FPGA control via high speed but high latency interfaces, in Proc.116

SPIE (R. S. Romaniuk, ed.), vol. 9662, (Wilga, Poland), p. 96623G, Sept., 2015. DOI.117

[7] “E2Bus control of FPGA-based systems via Ethernet interface.” https://github.com/wzab/e2bus.118

4

http://dx.doi.org/10.1088/1748-0221/10/02/C02019
http://dx.doi.org/10.1088/1748-0221/10/02/C02019
http://dx.doi.org/10.1088/1748-0221/10/02/C02019
http://dx.doi.org/10.1016/j.phpro.2012.02.516
http://www.erlang.org
http://dx.doi.org/10.1088/1748-0221/10/07/T07005
http://zeromq.org/
http://dx.doi.org/10.1117/12.2205441
https://github.com/wzab/e2bus

