HF chapter for Yellow Report

Elena Bruna for the "HF-chapter" group INFN - To March. 6th 2018

Contributors: E. Bruna, Z. Citron, A. Dainese, G. Innocenti, Y-J. Lee, J. Sun, M.Winn, S. Bass, A. Beraudo, V. Greco, I.Vitev

Key questions to address with HF in Run3/4

- Impact of collisional / radiative en. loss
- Radial distribution of energy lost
- Understanding dead-cone effect
- Transport properties
- Recombination vs fragmentation
- Magnetic effects on HF production

Key questions to address with HF in Run3/4

QGP properties

Key questions to address with HF in Run3/4

Small

Complementarity from the LHC experiments

What precision do we need to put quantitative constraints on theory?

Preparation of the HF chapter

- Two meetings: Jan 25, Feb 20
 - Experimentalists + theorists
- Google doc to discuss the different scenarios
- Proposal to divide the chapter in different sections, with focus in each of them on:
 - State of the art
 - New projections: what can we learn more
 - Connection to theory to strengthen the physics message

Heavy-flavor chapter: outline (1/2)

- 1.1 Impact of new detectors on heavy-flavour observables
- 1.2 Nuclear modification factor and collective flow
 - Experiments: state of the art (open questions?) and estimates for low and high pt.
 - Observables: RAA, v2, v3 for D, B mesons (when possible for both), event-shape engineering v2 analyses
 - Complementarity: focus on complementarity (pt, y), provide plot of pt vs y for all experiments for a couple of observables.
 - <u>Connection to theory</u>: constrain c and b diffusion coefficients. Additional insights from v2(D) vs v2(pi) on event-by-event

1.3 Directed flow

- Experiments: state of the art of v1 measurements, estimates for low and high pt
- Connection to theory: sensitive to early magnetic field

 Intro
Nuclear modification, elliptic flow
Directed flow

Outline (2/2)

- 4. c, b baryons
- 5. HF jets
- 6. (small systems)
- 7. HE-LHC
- 8. Conclusions

1.4 Charm and beauty baryons

- Experiments: state of the art, complementarity from different experiments. Observables: Lc, Lb.
- Connection to theory: potential to discriminate between different coalescence models.
- 1.5 Heavy-flavour jets
 - Experiments: B, D-jets, Di-Bjets
 - Connection to theory: constraints on mass dependence of in-medium splitting functions. Role of <u>coherence</u> (decoherence angle comparable to dead-cone angle).

→ More differential observables: qualitatively new insights into dead cone & in-medium splitting

- **1.6 Heavy flavours in small systems (in dedicate chapter)**
 - RpPb (D, B, baryons): mid and fwd rapidity to constrain CNM/small QGP effects in wide kinematic range
 - v2 in high-multiplicity pPb (D, HF-decay electrons and muons) to constrain initial/final state effects
 - pp high-multiplicity bridge between pp to PbPb to study HF production processes, onset of coalescence. Theory connection crucial

ightarrow Will enter the small-system chapter

1.7 Plans for HE-LHC

Under discussion

Ongoing studies in ALICE-HF for Run3/4

CERN-LHCC-2013-024 CERN-LHCC-2015-001 CERN-THESIS-2016-037 CERN-THESIS-2018-002

- Developments from what is available from ITS/MFT TDRs
 - Assessment of systematic uncertainties in case of projections with only statistical errors
 - Machine learning techniques for beauty baryons
 - D v₂ with event-shape engineering techniques
- New studies
 - $B^0 \rightarrow D^- e^+ v$
 - Heavy-flavor jets (D-jets)

CMS plans for HF studies

- Flavor dependence of parton energy loss and jet quenching could be studied with high statistics heavy flavor mesons
- Elliptic flow of charged hadrons and D⁰ mesons
- More differentially: charm and beauty jets, di-jets and substructures

LHCb plans for HF studies

- PbPb
 - Ongoing full simulation of Λ_c^+ as show-case to study centrality reach in Run3
- *p*Pb
 - assumed luminosity at $\sqrt{s_{NN}} = 8.16$ TeV: 160nb⁻¹
 - Possible measurements:
 - charm/beauty baryons
 - Heavy flavor correlations
 - In general, not limited by statistics
 - Need ideas on observables for the estimations
 - Limited manpower
 - Observables complement other experiments

Connection with theory

What precision do we need to put quantitative constraints on theory?

Some ideas to assess constraining power of D_s diffusion coefficient with precision from Run 3-4:

- Bayesian approach applied to our pseudo-data (R_{AA}, v₂, v₃ from all experiments)
- Fit pseudo-data scanning $D_{\rm s}$ values and providing a χ^2

See next talk

Backup

Forward and backward luminosities are added together

Assuming the charm cross section increases by a factor of 2 from 5 TeV to 8 TeV E. Bruna (INFN-To)

Dimuon yields estimation based on pPb data

Forward and backward luminosities are added together

Assuming the heavy flavor cross sectionsing meases by a factor of 2 from 5 TeV to 8 TeV

Dimuons states in pp data

Heavy Flavor Mesons with CMS

- Flavor dependence of parton energy loss and jet quenching could be studied with high statistics heavy flavor mesons
- Central values: 2015 performance for D0: pT>2 from measurements, pT<2 from PHSD; Projection: adjust to be smooth. B+ RAA central value from Magdalena's calculation
- Reduced stat and syst by lumi, but has a minimum syst of 4% per track as tracking eff syst

Identified hadron and Dv_2

- Elliptic flow of charged hadrons and D⁰ mesons
- Provide the strongest constrain on the c quark diffusion coefficients and path length dependence of the parton energy loss
- Extrapolation using data, reduced stat and syst. by lumi.

Precise measurements down to $p_T=0$

- Discriminate models to quantify microscopic interactions with the medium
- Total charm cross section
 - All charmed particles relevant (role of recombination for $D_{s},\,\Lambda_{c},..?)$
 - Reference for charmonium measurements

B mesons with **ALICE**

Beauty via $D\pi$, J/ ψ K, non prompt D and J/ ψ , combining measurements at mid and forward rapidity

Precise R_{AA} and v_2 can discriminate models at low p_T , where parton mass plays a role, constrain the **b-quark diffusion coefficient** and probe b-quark thermalisation

Elliptic flow with ALICE

Projections (from ITS, MFT TDR)

Provide the strongest constrain on the c and b quark diffusion coefficients and path-length dependence of the parton energy loss

Hadronization mechanisms of charm and beauty

