# **QGP** Physics:

How could heavy ion physics at the energy frontier profit from new electron collider measurements (experiment perspective)

> Astrid Morreale IGDORE and IMT-Atlantique Electrons for the LHC Workshop LAL Orsay, France June 27 2018

> > 1

QCD is expected to describe building blocks of visible matter (nucleons) and their binding in nuclei

Strongly interacting non-abelian gauge theory which has implications far from being fully understood





40 years of continuous discovery40 years of powerful R&D to help us elucidate it.

Heavy Ion Collisions and the discovery of the formation of a Quark Gluon Plasma:



40 years of continuous discovery40 years of powerful R&D to help us elucidate it.

Heavy Ion Collisions and the discovery of the formation of a Quark Gluon Plasma:



4



-How do we transition from point like to non-point like physics. How do arrive at a perfect liquid?

-How do color charged-quarks gluons and colorless jets interact with a nuclear medium

-How do the confined hadronic states emerge from these quarks and gluons.

# Many open questions we need to address

1. Hadronization, particle spectra and abundances

Among the first proposed signatures of the QGP PRL48(1982)1066 Observed in A-A at SPS, RHIC, LHC



ALI-DER-80680

Enhancement of strange particles with respect to non-strange yield is **also observed** for high multiplicity **pp** and **p-Pb** collisions



-Smooth transition connecting small and larger systems.

-These measurements may give us insights about the underlying dynamics. Is pp the correct reference for AA?

-eA could provide a more robust reference.

-More experimental insight is needed to interpret the final state strangeness we are observing in large and small systems

> https://arxiv.org/pdf/1305.0609 https://cds.cern.ch/record/2302756



The contribution of the QCD vacuum condensates to the masses for the three light quark flavours u, d, s considerably exceed the mass believed to be generated by the Higgs field.

Blue: masses generated by electroweak symmetry breaking (current quark mass)

Yellow: additional masses of the light quark flavors generated by spontaneous chiral symmetry breaking in QCD (constituent quark masses)

• Charm and beauty quark masses are not affected by QCD vacuum ( ideal probes to study QGP)

- Charm and beauty quarks provide hard scale for QCD calculations
- Charmonium production proceeds from hard initial processes and no strong correlations with event activity are expected

### Heavy flavor vs multiplicity: quarkonia

-Charmonium production proceeds from hard initial processes and no strong correlations with event activity are expected



pp collisions

Linear: MPI?

#### Initial stages 2017 Presentation

### Heavy flavor vs multiplicity: quarkonia

-Charmonium production proceeds from hard initial processes and no strong correlations with event activity are expected



Increase is not linear: highlights importance of other physical processes.

#### Initial stages 2017 Presentation

### Heavy flavor vs multiplicity



-Similar effects observed for D's -Hadronization doesn't seem to play a role

Mid-and backward rapidity (Pb-going): -Qualitatively similar behavior as in pp collisions

Forward rapidity (p-going): Saturation at high multiplicities? Bjorken-x range in the domain of shadowing / saturation? Large parton densities

What happens to the gluon density in nuclei? Does it saturate at high energy? Are we observing a hint of universal properties in all nuclei? (small and large).



-With the LHeC we can access a much lower *x*-region (10<sup>-6</sup>) -With the EIC we have enhanced color density with nuclear targets: access the non-linear evolution in the high gluon density region via nuclear diffraction.

Astrid Morreale electrons for the LHC 2018

2. Collective Expansion

### Hydrodynamical flow

**Radial Flow:** Affects shape of low  $p_{\tau}$  particle spectra

**Elliptic Flow:** Sensitive to initial geometry Requires early thermalization of the medium -Pb-Pb no significant energy dependence

- Radial flow pushes protons to intermediate  $p_{\tau}$  and depletes low  $p_{\tau}$ 

- Stronger radial flow in central Pb–Pb collisions

-Low to mid-p<sub>T</sub> described by hydrodynamic models

- Similar effects observed in highmultiplicity pp and p– Pb collisions





## **Anisotropic flow**



Initial overlap asymmetric  $\rightarrow$  pressure gradients



## Light meson flow



-Low  $p_{\tau}$ : Mass ordering expected in a collective expansion scenario.

-Low- $p_{\tau}$  :  $v_2$  sensitive to hydrodynamic expansion and initial conditions (geometry).

#### -Similar results observed in a high multiplicity p-Pb environment.

-Effect in these systems may be due to initial state (saturation?) or final state effects (expansion and/or thermal equilibrium ?)

## **Charm flows**



Non zero  $v_{2}^{2}$  for D-meson Non zero  $v_{2}^{2}$  for J/ $\psi$ 's

Strong coupling of c-quark with the medium Participation of low  $p_{\tau}$  charm to collective motion in the QGP Additionally for the J/ $\psi$  this is interpreted as proof of recombination.

```
Phys. Rev. Lett. 120.102301 (2018)
Phys. Rev. Lett. 119, 242301 (2017)
```

### Flow in small systems?



#### 3. Hard Processes

## Nuclear modification factor

Measure spectra of probe and compare to those in pp collisions or A-A collisions

$$R_{\rm AA} = \frac{\rm AA}{\rm scaled \ pp} = \frac{\rm d^2 N_{\rm AA}/\rm dp_T \rm dy}{\langle N_{\rm coll} \rangle \rm d^2 N_{pp}/\rm dp_T \rm dy}$$



## Energy loss in the medium

-High momentum partons lose energy while propagating through the QGP

-Energy loss depends on parton type properties of the medium.

-It can modify color flow



Astrid Morreale electrons for the LHC 2018

## Energy loss in the medium

**eA** provides a stable nuclear medium (CNM): -Controlled kinematics of hard scattering

-Final state particle with known properties.

-Varying nuclei size and initial parton energy control fragmentation' length.

-Independent and complementary information essential for the understanding the response of the nuclear medium to a fast moving quark.







## nPDF effects?



PHENIX reports an enhancement observed at backward rapidity in p-AI (and p-Au) collisions.

CMS dijet results support the observation of the gluon's EMC effect as well as quark modification

PHENIX: QM2018 J. Bryslawskyj

CMS: https://arxiv.org/abs/1805.04736

Astrid Morreale electrons for the LHC 2018

## Current knowledge on nPDF's

Electron- Ion collisions: Reduced sea/gluon nPDF uncertainties significantly Reaching down to  $x\sim 10^{-4}$  for EIC and  $10^{-6}$  for LHeC HF in *e*+A collision constraints at large-*x* gluon



## Summary

QCD studies have given us decades of discoveries, and not just the QGP.

Many open questions remain on how the transition from a small system to a dense system occurs: this information is needed to fully understand the properties of the QGP.

#### **Essential experimental bibliography from this presentation:**

-Strangeness enhancement in pp collisions: Nature Physics 13 (2017) 535-539

-Particle production vs multiplicity Phys. Lett. B 776 (2018) 91 Phys. Lett. B 724 (2013) 213

-Flow in large and small systems:

PbPb: Phys. Rev. Lett. 120.102301 (2018) pPb: arxiv:1804.09767, JHEP 09 (2017) 032

pp: PRL116, 172301 (2016)

### -Nuclear PDFs with dijets:

pA: arXiv:1805.04736

Astrid Morreale electrons for the LHC 2018

## **QGP Onset: Strangeness enhancement**

Enhancement of strange particles with respect to non-strange yield **is also observed** for high multiplicity **pp** and **p-Pb** collisions



-Smooth transition connecting small and larger systems.

-These measurements may give us insights about the underlying dynamics

-eA can provide a more robust reference.



More experimental insight is needed to interpret the final state strangeness we are observing in large and small systems

https://arxiv.org/pdf/1305.0609 and https://cds.cern.ch/record/2302756

Astrid Morreale electrons for the LHC 2018

## **Kinematic reach**



Astrid Morreale electrons for the LHC 2018