Workshop on the LHeC/FCC-eh and PERLE at LAL Orsay 27-29 June 2018, LAL Orsay

How could heavy-ion physics at the energy frontier profit from LHeC measurements

Elena G. Ferreiro

IGFAE, Universidade de Santiago de Compostela, Spain LLR, École polytechnique , France

Goal of HIC experiments: Study hot and dense QCD matter

Bulk Observables: p~<pt>,T ~ 99% of detected particles

Multiplicities

Thermal dileptons & direct photons Asymmetries, correlations, fluctuations

Collective behavior of the medium Initial conditions: T, ϵ , μ Thermalization and hydrodynamics

Hard Probes: p >> <pt>,T ~ 1% of detected particles

Fast quarks and gluons
Jet quenching
Quarkonia dissociation

Medium tomography & diagnosis Interpretation requires "vacuum" (p+p) and "cold nuclear" (p+Pb) data at the same energy

Status of Heavy Ions

Bulk Observables: p~<pt>,T ~ 99% of detected particles

Hard Probes: p >> <pt>,T
~ 1% of detected particles

Current status: matter created in AA at RHIC and LHC, with energy densities larger than those expected in lattice QCD for deconfinement=>QGP

- collective features in the soft sector
- well described by relativistic hydrodynamics if applied very early (≤ 1 fm/c) after the collision
- equilibration?

- very opaque to energetic partons or particles traversing
- modification of the yield of hard probes like high-p_T particles, jets, quarkonia

Old paradigm: the three systems (understanding before 2012)

Hot QCD matter:

This is where we expect the QGP to be created in central collisions

QCD baseline:

This is the baseline for "standard" QCD phenomena

Cold QCD matter:

This is to isolate nuclear effects in absence of QGP, e.g. nuclear pdfs

Totally unexpected:

- the discovery of correlations –ridge, flow- in small systems pA & pp
- Smooth continuation of heavy ion phenomena to small systems and low density
- Small systems as pA and pp show QGP-like features

Totally unexpected:

- the discovery of correlations -ridge, flow- in small systems pA & pp
- Smooth continuation of heavy ion phenomena to small systems and low density
- Small systems as pA and pp show QGP-like features

Two serious contenders remain today:

- initial state: quantum correlations as calculated by CGC
- final state: interactions leading to collective flow described with hydrodynamics => equilibration?

Totally unexpected:

- the discovery of correlations -ridge, flow- in small systems pA & pp
- Smooth continuation of heavy ion phenomena to small systems and low density
- Small systems as pA and pp show QGP-like features

Two serious contenders remain today:

- initial state: quantum correlations as calculated by CGC
- final state: interactions leading to collective flow described with hydrodynamics => equilibration?

The old paradigm that

- we study hot & dense matter properties in heavy ion AA collisions
- cold nuclear matter modifications in pA
- and we use pp primarily as comparison data appears no longer sensible

Totally unexpected:

- the discovery of correlations -ridge, flow- in small systems pA & pp
- Smooth continuation of heavy ion phenomena to small systems and low density
- Small systems as pA and pp show QGP-like features

Two serious contenders remain today:

- initial state: quantum correlations as calculated by CGC
- final state: interactions leading to collective flow described with hydrodynamics => equilibration?

The old paradigm that

- we study hot & dense matter properties in heavy ion AA collisions
- cold nuclear matter modifications in pA
- and we use pp primarily as comparison data appears no longer sensible

We should examine a new paradigm, where the physics underlying soft collective signals can be the same in all high energy reactions, from e⁺e⁻ to central AA

It becomes fundamental to have access to ep & eA collisions

We do not have a **QUANTITATIVE** understanding of the nuclear behaviour

required for A-A and QGP studies

We do not have a **QUANTITATIVE** understanding of the nuclear behaviour

We do not have a **QUANTITATIVE** understanding of the nuclear behaviour

The colliding objects

We do not have a **QUANTITATIVE** understanding of the nuclear behaviour

The colliding objects

Dense regime: lack of information about

- small-x partons
- correlations
- transverse structure

We do not have a **QUANTITATIVE** understanding of the nuclear behaviour

The colliding objects

Dense regime: lack of information about

- small-x partons
- correlations
- transverse structure

- nuclear WF & PDFs
- mechanism of particle production
- tomography

We do not have a **QUANTITATIVE** understanding of the nuclear behaviour

required for A-A and QGP studies

Dense regime: lack of information about

- small-x partons
- correlations
- transverse structure

Particle production at the very beginning:

- Which factorization?
- How can a system behave as isotropised so fast?

- nuclear WF & PDFs
- mechanism of particle production
- tomography

We do not have a **QUANTITATIVE** understanding of the nuclear behaviour

required for A-A and QGP studies

Dense regime: lack of information about

- small-x partons
- correlations
- transverse structure

Particle production at the very beginning:

- Which factorization?
- How can a system behave as isotropised so fast?

ep and eA:

- nuclear WF & PDFs
- mechanism of particle production
- tomography

- initial conditions for plasma formation
- how small can a system be and still show collectivity?

We do not have a QUANTITATIVE understanding of the nuclear behaviour

The colliding objects

Early stages

Analyzing the medium

Gluons from saturated nuclei → Glasma? → QGP → Reconfinement

Dense regime: lack of information about

- small-x partons
- correlations
- transverse structure

Particle production at the very beginning:

- Which factorization?
- How can a system behave as isotropised so fast?

ep and eA:

- nuclear WF & PDFs
- mechanism of particle production
- tomography

- initial conditions for plasma formation
- how small can a system be and still show collectivity?

We do not have a QUANTITATIVE understanding of the nuclear behaviour

The colliding objects

Early stages

Analyzing the medium

Gluons from saturated nuclei → Glasma? → QGP → Reconfinement

Dense regime: lack of information about

- small-x partons
- correlations
- transverse structure

Particle production at the very beginning:

- Which factorization?
- How can a system behave as isotropised so fast?

Probing the medium through energetic particles:

- Dynamical mechanisms for opacity
- How to extract accurately medium parameters?

ep and eA:

- nuclear WF & PDFs
- mechanism of particle production
- tomography

- initial conditions for plasma formation
- how small can a system be and still show collectivity?

We do not have a QUANTITATIVE understanding of the nuclear behaviour

The colliding objects

Early stages

Analyzing the medium

Gluons from saturated nuclei → Glasma? → QGP → Reconfinement

Dense regime: lack of information about

- small-x partons
- correlations
- transverse structure

Particle production at the very beginning:

- Which factorization?
- How can a system behave as isotropised so fast?

Probing the medium through energetic particles:

- Dynamical mechanisms for opacity
- How to extract accurately medium parameters?

ep and eA:

- nuclear WF & PDFs
- mechanism of particle production
- tomography

ep and eA:

- initial conditions for plasma formation
- how small can a system be and still show collectivity?

- modification of radiation and hadronization in the nuclear medium
- initial effects on hard probes

- Parton densities in nuclei are modified Bound nucleon ≠ free nucleon
- Nuclear PDF assumed to be factorizable in terms of the nucleon PDFs

$$f_i^A(x, Q^2) = R_i^A(x, Q^2) f_i(x, Q^2)$$

• If nuclear effects at play $R_i^A(x,Q^2) \neq 1$

- Parton densities in nuclei are modified Bound nucleon ≠ free nucleon
- Nuclear PDF assumed to be factorizable in terms of the nucleon PDFs

$$\sigma_{\mathrm{DIS}}^{\ell+A\to\ell+X} = \sum_{i=q,\overline{q},g} f_i^A(\mu^2) \otimes \hat{\sigma}_{\mathrm{DIS}}^{\ell+i\to\ell+X}(\mu^2)$$
 Nuclear PDFs, obeying the standard DGLAP Usual perturbative coefficient functions

assuming collinear factorization

Lack of data:

E. G. Ferreiro USC & LLR

large uncertainties for the nuclear
 PDFs at small scales and x

- Parton densities in nuclei are modified Bound nucleon ≠ free nucleon
- Nuclear PDF assumed to be factorizable in terms of the nucleon PDFs

10-1

Lack of data:

0.0 10-4

large uncertainties for the nuclear PDFs at small scales and x

10-3

$$\sigma_{\mathrm{DIS}}^{\ell+A\to\ell+X} = \sum_{i=q,\overline{q},g} f_i^A(\mu^2) \otimes \hat{\sigma}_{\mathrm{DIS}}^{\ell+i\to\ell+X}(\mu^2)$$
 Nuclear PDFs, obeying the standard DGLAP Usual perturbative coefficient functions

assuming collinear factorization

Problem for benchmarking in HIC in order to extract medium parameters

HKN07

- Parton densities in nuclei are modified
 Bound nucleon ≠ free nucleon
- Nuclear PDF assumed to be factorizable in terms of the nucleon PDFs

$$f_i^A(x,Q^2) = R_i^A(x,Q^2) f_i(x,Q^2)$$

Lack of data:

 large uncertainties for the nuclear PDFs at small scales and x

$$\sigma_{ ext{DIS}}^{\ell+A o\ell+X} = \sum_{i=q,\overline{q},g} f_i^A(\mu^2) \otimes \hat{\sigma}_{ ext{DIS}}^{\ell+i o\ell+X}(\mu^2)$$

Nuclear PDFs, obeying the standard DGLAP

Usual perturbative coefficient functions

assuming collinear factorization

 Problem for benchmarking in HIC in order to extract medium parameters

NLO

MRST98

ZM-VFNS

 $\Delta \chi^2 = 13.7$,

ratios, no

EMC for

gluons

order

proton

PDF

mass

scheme

comments

E. G. Ferreiro USC & LLR

NLO

CTEQ6.1

ZM-VFNS

 $\Delta \chi^2 = 50$, ratios,

huge

shadowing-

antishadowing

nPDFs collection							
Several nPDF sets available (using various data, LO/NLO, etc) Nestor Armesto							
	SET	HKN07 PRC76 (2007) 065207	EPS09 JHEP 0904 (2009) 065	DSSZ PRD85 (2012) 074028	nCTEQ15 PRD93 (2016) 085037	KA15 PRD93 (2016) 014036	EPPS 16 EPJC C77 (2017) 163
data	eDIS	~	~	~	~	V	~
	DY	~	~	~	~	>	~
	π0	×	>	V	V	X	~
	vDIS	×	×	V	×	X	~
	pPb	X	×	×	×	X	V
# data		1241	929	1579	740	1479	1811

NLO

MSTW2008

GM-VFNS

 $\Delta \chi^2 = 30$, ratios,

medium-modified

FFs for π⁰

How could HI physics at the energy frontier profit from LHeC

NLO

~CTEQ6.1

GM-VFNS

 $\Delta \chi^2 = 35$, PDFs,

valence flavour

sep., not enough

sensitivity

NNLO

JR09

ZM-VFNS

PDFs, deuteron

data included

NLO

CT14NLO

GM-VFNS

 $\Delta \chi^2 = 52$ flavour

sep., ratios,

LHC pPb data

LAL Orsay 28/6/2018

Nuclear PDFs at present

The EPPS16 errorbands at $Q^2 = 1.69 \text{ GeV}^2$

Nuclear PDFs with LHeC pseudodata

The improvement after adding the LHeC pseudodata at $Q^2 = 1.69 \text{ GeV}^2$

Nuclear PDFs with LHeC pseudodata

The improvement after adding the LHeC pseudodata at $Q^2 = 10 \text{ GeV}^2$

Nuclear PDFs: what we can learn in an ep/eA collider

At an ep/eA collider:

- DIS theoretically much cleaner
- PDF of a single nucleus possible, no need of ratios as for pA
- Same method of extraction in both ep and eA

Nuclear PDFs: what we can learn in an ep/eA collider

At an ep/eA collider:

- DIS theoretically much cleaner
- PDF of a single nucleus possible, no need of ratios as for pA
- Same method of extraction in both ep and eA
- Four orders of magnitude increase in kinematic range over previous DIS experiments
- ⇒ can change QCD view of the structure of nuclear matter
- ⇒ physics beyond standard collinear factorization can be studied in a single setup
 - size effects disentangled from energy effects

Small x and non-linear dynamics: saturation

Saturation is a density effect:

- small x (high energy)
- increase A or centrality

Small x and non-linear dynamics: saturation

- radiation as x decreases → large number of gluons
- breaks down at high densities → non-linear effects

Small x and non-linear dynamics: saturation

- radiation as x decreases → large number of gluons
- breaks down at high densities → non-linear effects

Nuclear matter in this regime: Color Glass Condensate

The CGC -the weak coupling realisation of saturation—provides a framework to compute:

- the hadron/nucleus wave function
- the process of particle production at the collision time
- initial conditions for subsequent evolution

Saturation: what we can learn in an ep/eA collider

- At small x, alternatives to collinear approaches exist, some of them breaking collinear factorisation or including non-linear dynamics
- Determining the dynamics at small x has been a major subject at HERA, and RHIC and the LHC both in pp, pA and AA
- Non-linear resummation techniques (weak coupling but nonperturbative CGC) better for dilute-dense systems: pA, eA

Saturation: what we can learn in an ep/eA collider

- At small x, alternatives to collinear approaches exist, some of them breaking collinear factorisation or including non-linear dynamics
- Determining the dynamics at small x has been a major subject at HERA, and RHIC and the LHC both in pp, pA and AA
- Non-linear resummation techniques (weak coupling but nonperturbative CGC) better for dilute-dense systems: pA, eA
- One would expect naively that suppression effects are larger when going from p to A in saturation than in collinear approaches
- Not necessarily: nuclear unitarization effect can be smaller for an already unitarized proton input
 - => saturation due to the increase of density when going from p to A could be smaller for an already saturated proton input

ep and eA essential

The ridge

The ridge: 2-particle long range correlation elongated in η and collimated in azimuth In AA attributed to final state interactions described by hydro: signal of equilibration

The ridge

The ridge: 2-particle long range correlation elongated in η and collimated in azimuth In AA attributed to final state interactions described by hydro: signal of equilibration

The ridge

The ridge: 2-particle long range correlation elongated in η and collimated in azimuth In AA attributed to final state interactions described by hydro: signal of equilibration

Different theoretical models of the ridge: hydrodynamic flows, local hot spots, initial-state fluctuations, parton cascades, glasma flux tubes, glasma turbulence fields, the momentum kick model, pQCD modeling, etc.

The ridge

The ridge: 2-particle long range correlation elongated in η and collimated in azimuth In AA attributed to final state interactions described by hydro: signal of equilibration

Different theoretical models of the ridge: hydrodynamic flows, local hot spots, initial-state fluctuations, parton cascades, glasma flux tubes, glasma turbulence fields, the momentum kick model, pQCD modeling, etc.

Two lines of explanations:

Initial state effect

- → CGC: assuming that the final state carry the imprint of initial-state correlations

 Medium effect
- → Coupling to a flowing medium: hydrodynamics at work already on pPb@LHC What about IC?

The experimental data was surprising:

Similarity of experimental data in pA and AA collisions

Hydro works well in AA

Hydro also works well in pA

Some issues:

- Very sensitive to the initial state
- Applicability of hydrodynamics is questionable

Different initial states: very different results

MC-Glauber does not constrain energy density dististribution

IP-Glasma constrains energy density deposition. However, it does not describe v_n in p+Pb

Different initial states: very different results

Proton substructure can matter (effects of the fluctuating shape of the proton)

The success of hydro for small systems:

Signal of equilibration or non-equilibrium evolution of a partonic system in QCD?

The success of hydro for small systems:

Signal of equilibration or non-equilibrium evolution of a partonic system in QCD?

If equilibrium is no longer a requirement:

- this naturally explain why pp data on azimuthal correlations appears to be so similar to data obtained in nucleus-nucleus collisions
- hydrodynamics will generically convert initial state geometry and fluctuations into correlations, thus making large and small systems look alike
- pushing this idea even further would imply that any lump of sufficiently high energy density could expand according to the laws of hydrodynamics natural consequence: presence of azimuthal correlations in e⁺e⁻ collisions?

The success of hydro for small systems:

Signal of equilibration or non-equilibrium evolution of a partonic system in QCD?

If equilibrium is no longer a requirement:

- this naturally explain why pp data on azimuthal correlations appears to be so similar to data obtained in nucleus-nucleus collisions
- hydrodynamics will generically convert initial state geometry and fluctuations into correlations, thus making large and small systems look alike
- pushing this idea even further would imply that any lump of sufficiently high energy density could expand according to the laws of hydrodynamics natural consequence: presence of azimuthal correlations in e⁺e⁻ collisions?

What about a non-hydro initial-state explanation?

long range rapidity correlations from initial state correlations

The success of hydro for small systems:

• Signal of equilibration or non-equilibrium evolution of a partonic system in QCD?

If equilibrium is no longer a requirement:

- this naturally explain why pp data on azimuthal correlations appears to be so similar to data obtained in nucleus-nucleus collisions
- hydrodynamics will generically convert initial state geometry and fluctuations into correlations, thus making large and small systems look alike
- pushing this idea even further would imply that any lump of sufficiently high energy density could expand according to the laws of hydrodynamics natural consequence: presence of azimuthal correlations in e⁺e⁻ collisions?

What about a non-hydro initial-state explanation?

long range rapidity correlations from initial state correlations

The ideal place to further investigate this: smaller systems ep and eA, that are in any case required for the initial conditions

Partonic evolution and hadronization

Relevant for particle production and QGP analysis in HIC:

Low energy:

hadronization in matter

- (pre)hadronic absorption
- formation time

High energy:

 modification of partonic evolution

jets plentiful in eA benchmark for jet quenching studies in AA

Ratio of fragmentation functions Pb/p

Other possible studies: quarkonium production

Production mechanism and polarization:

polarized J/ ψ photoproduction can be studied more precisely and up to much larger values of p_T in ep @ LHeC

⇒ test NRQCD factorization in charmonium physics

Butenschoen Kniehl

Charmonium WF in diffractive DIS within the dipole formalism Cheng et al.

Spatial and Momentum Tomography of Hadrons and Nuclei

Gluon TMDs could be directly probed by looking at p_T distributions and azimuthal asymmetries in $e p \rightarrow e Q Q X$ Boer, Lansberg, Pisano

Gluon GPDs

Y production at an EIC to determine the gluon density transverse spatial profiles in a wide range of x and consequently provide a path to determine the gluonic radius of the nucleon and the contribution of the total angular momentum of gluons to the nucleon spin

Joosten and Meziani

Conclusions

ep & eA collisions at high energy offer huge possibilities:

To provide information about QCD first principles:

- Partonic structure
- New regimes of QCD
- 3D structure of hadrons and nuclei
- The role of gluons in structure and dynamics
- Dynamics of QCD radiation and hadronization
- Confinement: understand the emergence of hadrons from color charge

To clarify aspects of pp, pA and AA collisions at high energy:

- Initial conditions for macroscopic descriptions
- Nature of collectivity
- Thermalization
- Extraction of parameters of the medium
- Distinguish "genuine" QGP effects
- ...