

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

MQXFS1d Welding Status

Antonios Vouris Cold Mass Status Meeting 25 January 2018

Coil pre-stress changes with SS skin pre-tensions

- Impact of the SS skin has been performed in our 3D model by applying different interferences between S.S. vessel and the magnet structure.
- The plot on the right presents the coil (pole) azimuthal stress along the magnet length with deferent SS skin pre-tensions induced by welding shrinkage.

🛟 Fermilab

1/25/2018

$\Delta\,\sigma_{Coil}$ compared with Giorgio's results

- The coil stress increases by ~3.2 MPa / 0.1mm weld shrinkage (half shell). This denotes about 48 MPa coil stress increasing is expected for a 50 mil (1.5 mm) weld shrinkage (half shell).
- This value is close to the results Giorgio presented in the his slides "MQXF Vessel Welding" (05/12/2017).
- Both 2D and 3D results shows the current weld shrinkage is relatively high for the coil pre-stress.

Calculation of Shell Weld Preparation

- C_{ALTOT} =Total Circumference of Outside surface of Aluminum shell
- C_{STEFLAETOT} = Total Circumference of Inner surface of Steel shell after welding
- Measured dia. of Aluminum Shell O.D. = 614.657 mm = 24.199 in.
- *Criteria to achieve correct tightness after welding*: $C_{\text{STEFLAFTOT}} = C_{\text{ALTOT}} .020$ in.
- $C_{AITOT} = 24.199 \text{ in. } x \prod = 76.023 \text{ in.}$ ٠
- C_{STEELBEFTOT} = C_{STEELAFTOT} + Total Shrinkage during welding ٠
- Total shrinkage during welding = .090 in. (over entire azimuth) = .045 in. per • side. Therefore, C_{STEELBEFTOT} = 76.023 in. -.020 in. + .090 in. = 76.093 in.
- And the inside diameter of the steel before welding is $76.093/\prod = 24.221$ in.
 - C_{BW} = Circumference of inside of steel shell half before welding
 - G = Gap size before welding per side = .094 in.٠
 - $C_{\text{STEFLBEFTOT}} = C_{\text{BW}} + C_{\text{BW}} + G + G$
 - Therefore, $C_{BW} = (C_{STEELBEETOT} 2G)/2$ ٠
 - Therefore, $C_{BW} = (76.093 \text{ in.} .188 \text{ in.})/2 = 37.952 \text{ in.}$ ٠

Calculation of Shell Weld Preparation

(Using Outside Diameter)

- C_{ALTOT} =Total Circumference of Outside surface of Aluminum shell
- C_{STEELAFTOT} = Total Circumference of Inner surface of Steel shell after welding
- Measured dia. of Aluminum Shell O.D. = 614.657 mm = 24.199 in.
- Outside dia. Stainless Shell after welding = 24.199 in. + (.330)(2) = 24.859 in.
- *Criteria to achieve correct tightness after welding*: C_{STEELAFTOT} = C_{ALTOT} .020 in.
- Outside circumference of steel after welding = C_{OUTSTEELLAFTOT} = 24.859 in. x ∏ = 78.096 in.
- $C_{OUTSTEELBEFTOT} = C_{OUTSTEELAFTOT} + Total Shrinkage during welding$
- Total shrinkage during welding = .090 in. (over entire azimuth) = .045 in. per side.
- Side. • Therefore, C_{OUTSTEELBEFTOT} = 78.096 in. -.020 in. + .090 in. = 78.166 in.
- And the outside diameter of the steel before welding is 78.166/ \prod =24.881 in.
 - C_{OBW} = Circumference of outside of steel shell half before welding
 - G = Gap size before welding per side = .094 in.
 - $C_{OUTSTEELBEFTOT} = C_{OBW} + C_{OBW} + G + G$
 - Therefore, C_{OBW} = (C_{OUTSTEELBEFTOT} 2G)/2
 - Therefore, C_{OBW} = (78.166 in.– .188 in.)/2 = 38.989 in.

Shell Half before Welding

(Using Outside Diameter calculated geometrically)

 $\frac{1}{2} C_{\text{STEELBEFTOTT}} = 76.093 \text{ in}/2 = 38.046 \text{ in}.$ $\frac{1}{2} G = .094 \text{ in}./2 = .047 \text{ in}.$ $C_{BW} = 37.952 \text{ in}.$ Wall thickness of shell = .330 inches. Inside dia of shell = 24.221 inches. Outside dia of shell = 24.221 inches + (.330)(2) = 24.881 in.

Outside circumference of shell = 24.881 x \prod = 78.166 in.

Therefore C_{OUTBEF} = outside circumference of shell half - (½ G)(2) = (78.166/2) - (.047)(2) = 38.989 in.

Fuji film plan

Measurements of center section of MQXFS1C shell.

Status

Next steps:

- Wire up the strain gauges
- Scribe the centerline both sides
- Insert the Fuji films
- Fit up the shells
- Welding
 - Final shell leveling wrt. equipment
 - Monitor temperatures
 - Measure strain gauges after each passes

