Semi-leptonic decays at the LHC FPCP 2018, Hyderabad

Mark Smith on behalf of the LHCb collaboration

14 July 2018

Imperial College London

Lepton Universality

Tension with SM in R(D) vs $R(D^*) \sim 3.7 \sigma \rightarrow$ new physics at tree-level?

Inclusive/Exclusive $|V_{ub}|$ and $|V_{cb}|$

LHCb: Nature Physics 10 (2015) 1038. $\Lambda_b \rightarrow p \mu^- \nu_\mu$

Semi-leptonic B decays at the LHC

Only LHCb \rightarrow nothing yet from ATLAS or CMS.

LHCb

Two stage trigger:

- L0 hardware basic selection.
- HLT software reconstructed events. Run 2 : 6 fb^{-1} at 13 TeV

Data collected:

- Run 1 : 3 fb⁻¹ at 7-8 TeV

LHCb

LHCb Integrated Recorded Luminosity in pp, 2010-2018

Semi-leptonic B decays at the LHC

- \bullet Theoretically 'clean' \rightarrow only calculate one hadronic current.
- Large *B* production cross-section.
- Large quantity of Λ_b , B_s and B_c .
- Muon to trigger on at L0.

- No beam energy constraint.
- Hard to make an exclusive HLT selection. Use an MVA.
- Many backgrounds.
- Need lots of simulation.

Semi-leptonic *B* decays at the LHC

Ascertain *B* kinematics up to two-fold ambiguity. Ciezarek et al. JHEP (2017):21

Estimate corrected mass:

$$m_{corr} = |p_T'| + \sqrt{|p_T'|^2 + m_{vis}^2}$$

 p'_{T} is visible momentum transverse to *B* flight.

Variable	Definition	μ	au
$m^2_{miss}\ q^2\ E^*_\mu$	$egin{aligned} \left(p_B - p_{vis} ight)^2 \ \left(p_B - p_{D^*} ight)^2 \ E_\mu \ ext{in } B \ ext{frame} \end{aligned}$	$\begin{array}{c} {\rm peaks \ at \ 0} \\ 0 {\rm MeV} < q^2 < 3270 {\rm MeV} \\ {\rm hard} \end{array}$	$>0\ m_ au < q^2 < 3270{ m MeV}\ { m soft}$

Muonic $R(D^*)$ method _{PRL 115, 111803} (2015)

- 3D template fit.
 - μ mis-ID and combinatorial taken from data.
 - All other templates from simulation with systematic variations.
- Major backgrounds:
 - $B \rightarrow D^{**} \mu \nu$
 - $B
 ightarrow D^{*+} X_c$, $X_c
 ightarrow X \mu
 u$
 - Reduce with charged isolation.

Muonic $R(D^*)$ - results _{PRL 115, 111803} (2015)

 $2.1\,\sigma$ deviation from SM prediction

Major systematics:

- Simulation sample size \rightarrow reducible
- mis-ID sample size \rightarrow reducible
- $B \rightarrow D^* \tau \nu$ form-factor \rightarrow scale with data

τ reconstruction : $\tau^+ \to \pi^+ \pi^- \pi^+ \overline{\nu}_{\tau}(\pi^0)$ (13.9%)

$$\mathcal{K}(D^*) = \frac{\mathcal{B}(B \to D^* \tau \nu_{\tau})}{\mathcal{B}(B \to D^* \pi^+ \pi^- \pi^+)}$$

- Require external input to turn K(D^{*}) into R(D^{*}).
- Reconstructable τ decay vertex \rightarrow background reduction!
- Estimate *B* kinematics (backup).

Hadronic $R(D^*)$ - I

Candidates / 0.1

 10^{3}

 10^{2}

10

PRL 120, 171802 (2018) PRD 97, 072013 (2018)

LHCb simulation

Prompt $(D^*\pi\pi\pi X)$

 $(D^*\tau v)$

14 July 2018

13 / 24

e-charm (D*DX)

Major backgrounds:

- $B \rightarrow D^{*+}\pi^+\pi^-\pi^-X$
 - Reduced with τ flight distance cut.
- $B \rightarrow D^{*+}X_c$
 - $X_c \rightarrow \pi^+ \pi^- \pi^- X$.
 - Reduced with a multivariate discriminator.

FPCP 2018

Semi-leptonic decays

Hadronic $R(D^*)$ - II

PRL 120, 171802 (2018) PRD 97, 072013 (2018)

Run 1, 3 fb⁻¹. Fit q^2 , t_{τ} , BDT classifier:

$R(D^{*-}) = 0.291 \pm 0.019(stat) \pm 0.026(syst) \pm 0.013(BR)$

$B ightarrow D^0 \mu^- u_\mu X$ branching fractions

• Quadratic equation for B^-K^+ energy \rightarrow pick minimum value for real solution.

$$m_{min} = \sqrt{m_B^2 + m_K^2 + 2m_B\sqrt{p_K^2\sin^2\theta + m_K^2}}$$

• Constrain signal and background from $m_{min} - m_B - m_K$ distribution.

• Calculate m_{miss}^2 assuming the signal decay.

$B ightarrow D^0 \mu^- u_\mu X$ branching fractions

Fit m_{miss}^2 for $B^- \to D^0 \mu^- \overline{\nu}_{\mu} X$ components.

LHCb-PAPER-2018-024

$$f_{D^0} = 0.25 \pm 0.06$$

 $f_{D^{**0}} = 0.21 \pm 0.07$

 $f_{D^{*0}} = 1 - f_{D^0} - f_{D^{**0}}$

What else to measure?

- More $b \rightarrow c$:
 - $\bar{B}^0_s \rightarrow D^{(*)-}_s \tau^+ \nu_\tau$
 - $B_c^+ \to J/\psi \, \tau^+ \nu_\tau$
 - $B \to D^{**} \tau^+ \nu_{\tau}$ (arXiv:1606.09300)
 - Lower statistics
 - Theoretically studied

Baryons:

- $\Lambda_b^+ \to \Lambda_c^{(*)} \tau^+ \nu_\tau$
- Decent statistics
- Theoretically studied
- $b \rightarrow u$ transitions:
 - Probe flavour structure
 - $\Lambda_b^0 \to p \tau^+ \nu_{\tau}$
 - $B^+ \rightarrow \rho^0 \tau^+ \nu_{\tau}$
 - $B^+ \rightarrow p \bar{p} \tau^+ \nu_{\tau}$
 - Statistically challenged
 - Theoretically challenged

PRL 120, 121801 (2018)

$$R(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu})} \qquad \tau^+ \to \mu^+ \overline{\nu}_{\tau} \nu_{\mu}$$

 $R(J/\psi)$

- Probing same physics as R(D*). SM expectation 0.25-0.28.
 Phys. Lett. B452 (1999) 129, arXiv:hep-ph/0211021,
 Phys. Rev. D73 (2006) 054024, Phys. Rev. D74 (2006) 074008
- Only available at LHCb.
- As per $R(D^*)$ use kinematic distributions: m_{miss}^2 , $Z(q^2, E_{\mu}^2)$.
 - Additionally consider B_c^+ decay-time.
 - $B_c^+ \rightarrow J/\psi$ form-factors are unkown estimated from fit to enriched sample of the normalisation mode.

$R(J/\psi)$ results _{PRL 120, 121801} (2018)

3D template fit: B_c decay-time, m_{miss}^2 , Z.

$$R(J\!/\psi) = 0.71 \pm 0.17 \pm 0.18$$

- Compatible with SM at 2σ .
- \bullet First evidence of decay $B_c^+ \to J\!/\!\psi\, \tau^+ \nu_\tau$
- Largest systematics from $B_c \rightarrow J/\psi$ form-factor and limited simulation sample size both can be improved.

$\Lambda_b \rightarrow \Lambda_c$ form-factor PRD 96, 112005 (2017)

We can measure $\Lambda_b \to \Lambda_c^+ \mu^- \nu_\mu$ differential BF \to form-factor shape.

- Measure yield of $\Lambda_b \rightarrow \Lambda_c^+ \mu^- \nu_\mu$ in 14 bins of 1 < w < 1.43.
- Take lower q^2 solution.
- Correct for selection efficiency.
- Correct for feed-down from $\Lambda_c^{*+} \to \Lambda_c^+ \pi^+ \pi^-$ extracted from data.
- Unfold w resolution.

$\Lambda_b \to \Lambda_c$ form-factor

PRD 96, 112005 (2017)

- With a suitable normalisation mode $|V_{cb}|$ can be extracted.
- Knowledge of the $\Lambda_b \to \Lambda_c$ form-factors are vital for $R(\Lambda_c)$ measurements.

Looking forward at LHCb

Upgrade I: CERN-LHCC-2012-007 Upgrade II: CERN-LHCC-2017-003

Continued improvement reliant on:

- Simulation size
- Theory collaboration
- Experimental input

Angular analyses?

If the tension persists we can learn more about new physics with angular and kinematic variables.

- BaBar has compared q² with theory: PRD 88, 072012 (2013)
- Belle has measured τ polarisation: PRL 118, 211801 (2017)
- Unfolding needs careful consideration at LHCb.

Conclusions

Much work done:

- LHCb has collected a lot of high quality data.
- Measurements are consistent with the experimental average.

Much work to be done:

- Many (unique) measurements still to make.
- These are exciting times.

BACKUP

Theoretical uncertainties

Bigi, Gambino, Schacht: PLB 769, 441-445 (2017) Grinstein, Kobach: PLB 771, 359-364 (2017)

More data needed \rightarrow new Belle result!

Hadronic $R(D^*)$ - kinematics

Two-fold ambiguity in determing τ momentum:

$$|p_{\tau}| = \frac{(m_{3\pi}^2 + m_{\tau}^2) |p_{3\pi}| \cos \theta_{\tau,3\pi} \pm E_{3\pi} \sqrt{(m_{\tau}^2 - m_{3\pi}^2)^2 - 4m_{\tau}^2 |p_{3\pi}|^2 \sin^2 \theta_{\tau,3\pi}}}{2(E_{3\pi}^2 - |p_{3\pi}|^2 \cos^2 \theta_{\tau,3\pi})}$$

where $\theta_{\tau,3\pi}$ is the angle between the 3π system 3-momentum and the τ flight. Take maximum allowed angle:

$$heta_{ au,3\pi}^{max} = rcsin\left(rac{m_{ au}^2-m_{3\pi}^2}{2m_{ au}\left|p_{3\pi}
ight|}
ight)$$

Same for *B* momentum where Y represents the $D^{*-}\tau^+$ system:

1

$$\left| \boldsymbol{p}_{B^{0}} \right| = \frac{\left(m_{Y}^{2} + m_{B^{0}}^{2} \right) \left| \boldsymbol{p}_{Y} \right| \cos \theta_{B^{0},Y} \pm E_{Y} \sqrt{\left(m_{B^{0}}^{2} - m_{Y}^{2} \right)^{2} - 4m_{B^{0}}^{2} \left| \boldsymbol{p}_{Y} \right|^{2} \sin^{2} \theta_{B^{0},Y}}{2(E_{Y}^{2} - \left| \boldsymbol{p}_{Y} \right|^{2} \cos^{2} \theta_{B^{0},Y})}$$

with:

$$heta_{B^0,Y}^{max} = \arcsin\left(rac{m_{B^0}^2 - m_Y^2}{2m_{B^0}\left|p_Y\right|}
ight)$$

Muonic $R(D^*)$ - uncertainties

PRL 115, 111803 (2015)

Table 1: Systematic uncertainties in the extraction of $\mathcal{R}(D^*)$.

Model uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	2.0
Misidentified μ template shape	1.6
$\overline{B}{}^0 \to D^{*+}(\tau^-/\mu^-)\overline{\nu}$ form factors	0.6
$\overline{B} \to D^{*+} H_c (\to \mu \nu X') X$ shape corrections	0.5
$\mathcal{B}(\overline{B} \to D^{**}\tau^-\overline{\nu}_\tau)/\mathcal{B}(\overline{B} \to D^{**}\mu^-\overline{\nu}_\mu)$	0.5
$\overline{B} \to D^{**} (\to D^* \pi \pi) \mu \nu$ shape corrections	0.4
Corrections to simulation	0.4
Combinatorial background shape	0.3
$\overline{B} \to D^{**} (\to D^{*+} \pi) \mu^- \overline{\nu}_{\mu}$ form factors	0.3
$\overline{B} \to D^{*+}(D_s \to \tau \nu) X$ fraction	0.1
Total model uncertainty	2.8

$R(D^*)$ average

$\Lambda_b \rightarrow \Lambda_c$ form-factor PRD 96, 112

 $\Lambda_b \rightarrow \Lambda_c^+ \mu^- \nu_\mu$ decay described by 6 FF.

• Take infinite heavy quark mass \rightarrow Isgur-Wise function $\xi_B(w)$

$$w = v_{\Lambda_b} \cdot v_{\Lambda_c^+} = (m_{\Lambda_b}^2 + m_{\Lambda_c}^2 - q^2)/2m_{\Lambda_b}m_{\Lambda_c^+}$$

• Differental decay rate:

$$\frac{d\Gamma}{dw} = GK(w)\xi_B^2(w)$$

G is a constant, K(w) is a known kinematic factor. Parametrise $\xi_B(w)$, i.e. with Taylor expansion:

$$\xi_B(w) = 1 -
ho^2(w-1) + rac{1}{2}\sigma^2(w-1)^2 + \dots$$

