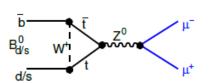
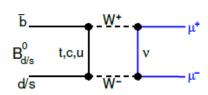
$B_{d,s} \rightarrow \mu^+ \mu^-$ at the LHC

Kajari Mazumdar TIFR, Mumbai, India

On behalf of ATLAS, CMS & LHCb collaborations at the LHC

FPCP conference, Hyderabad 14-18 July, 2018


HEP is knocking at the heaven's door


- Direct searches at the LHC has not yielded any positive indication for existence of beyond Standard Model (SM) physics at TeV energy scale or higher.
- The search for *New Physics* (NP) at the LHC has become a marathon from an anticipated sprint game.
- Surely with only about few % of data delivered till now, THERE IS HOPE.
- This hope is sustained by the exciting deviations from SM in B-physics in several measurements.
 - → These could be hints for NP at much higher energy scale than accessible directly at colliders.
- NP can contribute to
- → Enhancement or suppression of decay rates
- → Introduction of new source of CP violation
- → Modification of angular distribution of final state particles.

$$B_{d,s} \rightarrow \mu^+ \mu^-$$

• Orthogonal to NP searches via b \rightarrow s γ , $\mu \rightarrow$ e γ ,...

- Extremely rare decay due to loop level processes
- i) FCNC via Z penguin and box diagram
- ii) Very clean experimental signatures
- iii) Helicity suppression: m_I^2/M_B^2

- Predicted branching ratios (time integrated) in SM
- → with latest value to top mass, higher order effects of electroweak and strong interactions

Bobeth et al, PRL 112, (2014) 101801

$$\mathcal{B}_{SM}(B_s \rightarrow \mu^+\mu^-) = (3.65 \pm 0.23) * 10^{-9}$$

$$\mathcal{B}_{SM}(B_d \rightarrow \mu^+\mu^-) = (1.06 \pm 0.09) * 10^{-10}$$

Ratio R=
$$0.0295^{+0.0028}_{-0.0025}$$

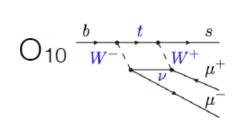
Note
$$(V_{ts} > V_{td})$$

• Small theoretical uncertainties (mainly due to CKM matrix elements & decay constants $f_{d'}$, f_s) \rightarrow excellent probe for new physics

What does data say?

- Branching ratio measurements are in agreement with SM!
- However NP may still be playing a role in the process without affecting the BR.
- But deviations are seen in other processes involving b \rightarrow s $\mu\mu$ transitions: (angular analysis, lepton flavour universality, ..)
 - → cannot be just experimental effects
 - → cannot be explained theoretically in terms of QCD.
- In effective theory formalism, via, operator product expansion formalism, one tries to decipher the nature of new interaction.
 - → The Wilson coefficients corresponding to perturbative, short distance physics, sensitive to physics at energy scale higher than electroweak scale.
 - → Operators indicating non-perturbative, long distance aspects of QCD.
- NP can modify Wilson coefficients, as well as induce new operators.

New Physics effect on decays


The decay amplitude can be described by effective field theories;

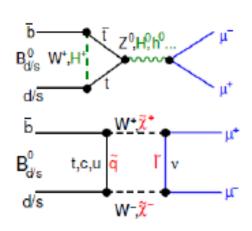
$$A(M \to F) = \langle F | \mathcal{H}_{eff} | M \rangle = \frac{G_F}{\sqrt{2}} \sum_i V_{CKM}^i C_i(\mu) \langle F | Q_i(\mu) | M \rangle$$

$$V_{ud} \qquad V_{us} \qquad V_{ub} \qquad CKM \qquad \text{Wilson Coeff.} \qquad \text{Hadronic matrix} \qquad \text{Couplings} \qquad \mu = \text{energy scale} \qquad \text{elements}$$

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i [\mathcal{C}_i(\mu) \mathcal{O}_i(\mu) + \mathcal{C}'_i(\mu) \mathcal{O}'_i(\mu)] \\ \text{left handed} \\ \text{left handed} \\ \text{right handed} \\ \text{(suppressed in the SM)} \\ \text{i=1, 2} \\ \text{i=3-6, 8} \\ \text{Gluon penguin} \\ \text{Photon penguin} \\ \text{i=9, 10} \\ \text{i=9, 10} \\ \text{i=S} \\ \text{Higgs (scalar) penguin} \\ \text{Pseudoscalar penguin} \\ \text$$

• Only C_{10} (axial-vector) contributes to $B_{d,s} \rightarrow \mu^+\mu^-$ in SM

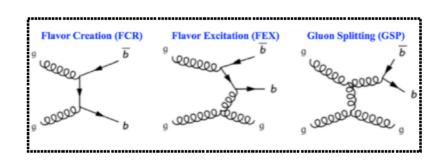
New Physics effect on $B_{d,s} \rightarrow \mu^+\mu^-$ branching fraction

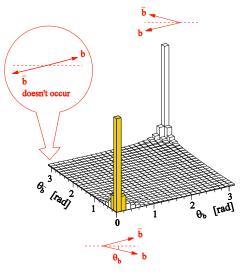

$$\Gamma(B_s^0 \to \mu^+ \mu^-) \sim \frac{G_F^2 \alpha^2}{64\pi^3} m_{Bs}^2 f_{Bs}^2 |V_{tb} V_{ts}|^2 |2m_\mu C_{10}|^2$$

From lattice calculations

to be determined experimentally

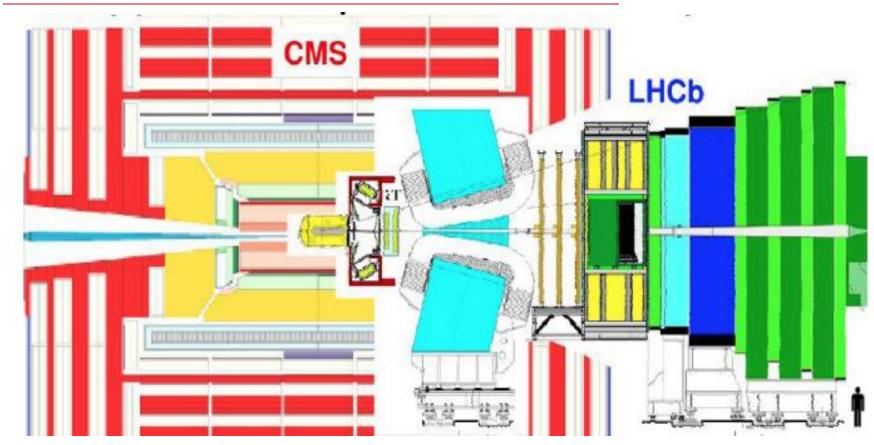
In presence of NP (eg., extended Higgs sector)
 C_s, C_p contributes


$$\mathcal{B} \propto |V_{tb}V_{tq}| \left[\left(1 - \frac{4m_{\ell}^2}{M_B^2} \right) |\mathbf{C_S} - \mathbf{C_S'}|^2 + |(\mathbf{C_P} - \mathbf{C_P'})|^2 + \frac{2m_{\ell}}{M_B} (\mathbf{C_{10}} - \mathbf{C_{10}'})|^2 \right]$$


- Similar considerations for $B_{d.s} \rightarrow \tau^+\tau^-$ but less suppressed from helicity
- Further Minimal Flavour Violation (MFV) models, accommodating violation of lepton flavour universality, may enhance the rate significantly.

B-physics at the LHC

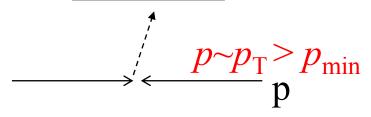
- Large cross section: 300 μb @ √s = 7 TeV
 600 μb @ √s = 13 TeV
- Experiments at LHC are very suitable for detailed studies in heavy flavour sector.



- b-quark life time ~ 1.6 ps (transitions between quarks via CKM matrix)
- → Important to measure secondary vertex with precision
- Hadronization of b : ${\rm B^0}\,(40\%),\,{\rm B^+}\,(40\%),\,{\rm Bs}\,(10\%),\,{\rm b\text{-}baryons}\,\Lambda_{\rm b}\,{\rm etc:}\,(10\%)$
- Average momentum of B-meson: ~ 100 GeV @ vs = 13 TeV
- In a large fraction of events, b & b are back to back.

Complementarity of CMS and LHCb experiments

22m


Innermost detector plays key role providing high resolution of

- i) Impact parameter to resolve secondary vertices
- ii) Dimuon invariant mass,

15m

CMS/ATLAS vs. LHCb

central detector

forward detector

$$p \xrightarrow{p}_{L} > p_{\min}$$

$$p \xrightarrow{} p$$

excellent

 $\rightarrow p_T$ threshold can be set low for high b-efficiency

Rough comparison

•	Experiment	(Run2 scenario)
---	------------	-----------------

- Instantaneous luminosity
- Avg. interactions /crossing
- bb events /10⁷s
- Track measurement
- p_⊤ threshold for trigger (GeV)
- m_{uu} mass resolution (MeV)
- Proper time resolution (fs)
- capability for measuring μ

ATLAS/CMS	LHCb
$1* 10^{34} / cm^2 / s$	$2*10^{32}$ /cm ² /s
50	0.5
5*10 ¹³ * accept.	1*10 ¹² * accept.
ϑ >220 mrad	$10 < \vartheta < 300 \text{ mrad}$
4(3)	1.5
32 - 75	25
77	36

excellent

Measurement of $B_s \rightarrow \mu^+\mu^-$

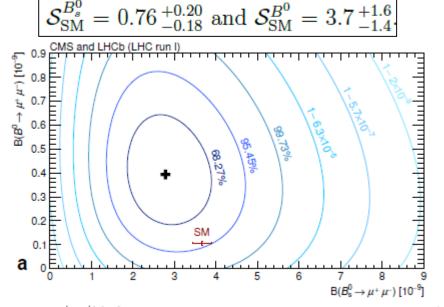
Searched during last 30 years

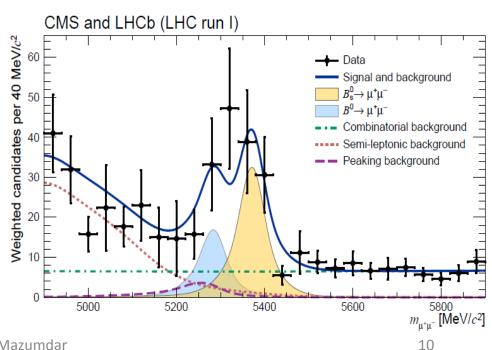
CMS: 25/fb LHCb: 3/fb

- Combined measurement by CMS and LHCb using Run1 data
- \rightarrow B_s $\rightarrow \mu^{+}\mu^{-}$ observed with 6.2 σ significance
- \rightarrow Evidence of B_d $\rightarrow \mu^+\mu^-$ with 3.0 σ significance

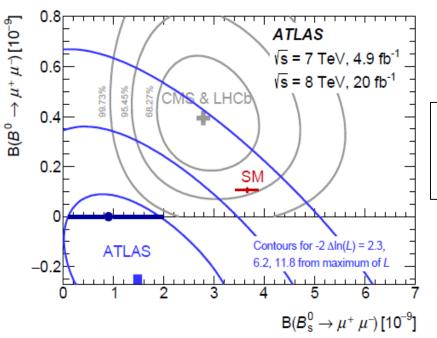
Nature 522 (2015) 68

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left(2.8 \,{}^{+0.7}_{-0.6}\right) \times 10^{-9}$$
$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = \left(3.9 \,{}^{+1.6}_{-1.4}\right) \times 10^{-10}$$

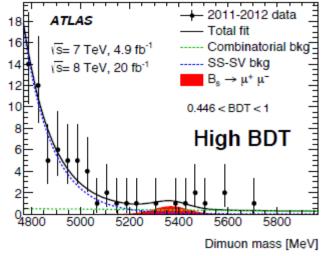

 \rightarrow within 1.2 σ of SM


 \rightarrow within 2.2 σ of SM

Ratio : R = 0.14 + 0.06 - 0.08


 \rightarrow within 2.3 σ of SM

Ratio of observation wrt SM



Measurement by ATLAS experiment: Run1 data

EPJ C76 (2016) 9, 513

$$\mathcal{B}(B_s^0\to\mu^+\mu^-)=(0.9^{+1.1}_{-0.8})\times 10^{-9} \\ \mathcal{B}(B^0\to\mu^+\mu^-)<4.2\times 10^{-10}\ \text{@ 95\% CL}$$

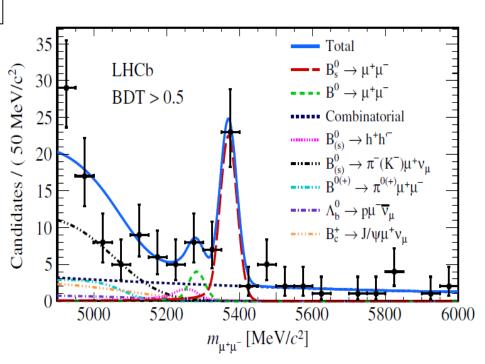
Events / 40 MeV

Significance of B_s signal 1.6 σ

2d likelihood compatible with SM at 2σ

Recent results from LHCb

PRL 118 (2017) 191801


- Updated analysis using combination of Run2 data (1.4 /fb) & Run1 data (3/fb)
- → new signal isolation
- → better rejection of di-hadron background due to better particle ID
- → Background rejection improved using new multivariate analysis (BDT)
 - Theoretical uncertainties (on V_{CKM}, f_{Bs}) well below statistical error

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}$$

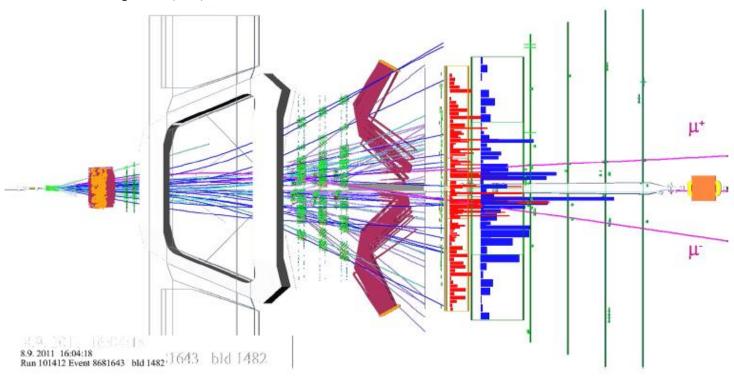
First observation by a single experiment with 7.8 σ significance

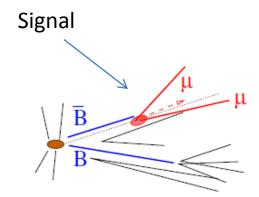
$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.4 \times 10^{-10}$$
No evidence

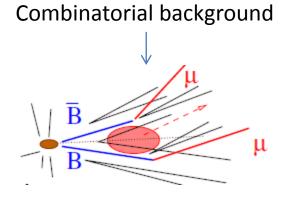
Smaller compared to Run1 measurement

Candidate event

Event 1896231802 Run 177188 Wed, 15 Jun 2016 21:35:20

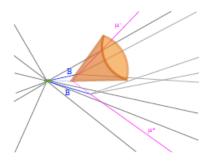

B:

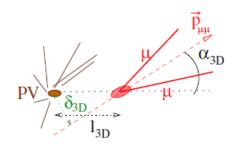

mass = 5379.31 MeV/c^2 $p_T(B) = 11407.5 \text{ MeV/c}$ BDT = 0.968545 $\tau = 2.32 \text{ ps}$


muons:

$$p_T(\mu^+) = 7715.4 \text{ MeV/c}$$

 $p_T(\mu^-) = 3910.9 \text{ MeV/c}$

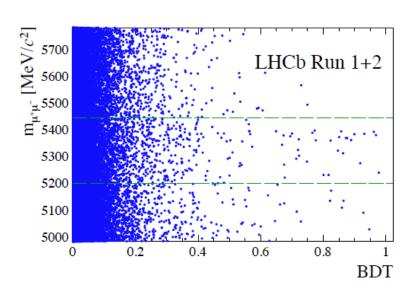

$B_s \rightarrow \mu^+\mu^-$ event in LHCb



Discriminated via isolation variable

LHCb: latest analysis strategy

- Opposite sign muon pair: $m_{\mu\mu}$: [4900, 6000] MeV
- Signal/background classification in $m_{\mu\mu}$ vs. BDT plane
- Inputs to BDT: kinematics, geometrical and isolation variables
- Background discrimination using BDT much better compared to performance of Run1 MVA.
- Categorization by $m_{\rm uu}$ and BDT score

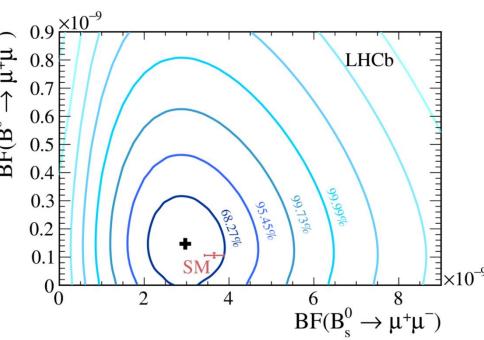

- Calibration of signal peak position with $B_s \rightarrow h^+ h^-$ (KK, K π)
- Normalization channels: (signal-like topology), $B^+ \rightarrow J/\Psi K^+$
- Fraction of hadronization (f_d/f_s) \sqrt{s} –dependent
 - \rightarrow 3.86± 0.22 at 13 TeV, 6.8% increase for Run2
 - \rightarrow estimated from ratio of B⁺ \rightarrow J/ Ψ K⁺ to B⁰_s \rightarrow J/ Ψ ϕ
- Background estimation: using data-driven methods, MC samples, theoretical inputs.

Phys. Rev. lett 118 (2017) 191801

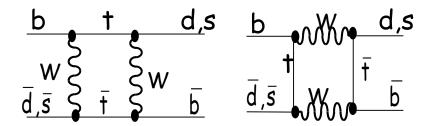
LHCb: results

- Yields: $B^+ \rightarrow J/\Psi K^+ : (1964 \pm 1) \times 10^3$, $B^0 \rightarrow K\pi : (62\pm 3) \times 10^3$
- Expect ~ 62 events of $B_s \rightarrow \mu^+\mu^-$, ~ 7 events of $B_d \rightarrow \mu^+\mu^-$ in whole BDT range
- Branching fraction from unbinned maximum likelihood fit, in high BDT region (signal and exclusive bkg. fractions constrained to expectations)
- Upper limit on $\mathfrak{B}(B_d \to \mu^+\mu^-)$ from CL_s (= $CL_{S+B}/CL_s = 0.5$) method
- Compatibility with background hypothesis: $1 CL_b = 0.05$
- Effective lifetime from signal weighted decay time fit.


Phys. Rev. lett 118 (2017) 191801


LHCb: results

Upper limit on $\mathfrak{B}(\mathsf{B}_\mathsf{d} \to \mu^+\mu^-)$


Phys. Rev. lett 118 (2017) 191801

2D likelihood profile

Effective lifetime

- Oscillation leads to CP even and odd mass eigenstates with different decay widths: $\Gamma_{\rm H}$, $\Gamma_{\rm I}$ and $\Delta\Gamma$ = 0.082 ± 0.007 /ps
- In SM only the heavy state decays to dimuon final state → NOT the case if new physics leads to large CP violation in Bs system.
 - effective lifetime for dimuon decay is a complementary probe for new physics.

$$\tau_{\ell^+\ell^-} = \frac{\int_0^\infty t \langle \Gamma(B_s(t) \to \ell^+\ell^-) \rangle dt}{\int_0^\infty \langle \Gamma(B_s(t) \to \ell^+\ell^-) \rangle dt}$$

$$\tau_{\ell^+\ell^-} = \frac{\int_0^\infty t \langle \Gamma(B_s(t) \to \ell^+\ell^-) \rangle dt}{\int_0^\infty \langle \Gamma(B_s(t) \to \ell^+\ell^-) \rangle dt} \left[\Gamma(B_s(t) \to \mu^+\mu^-) \equiv \Gamma(B_s^0(t) \to \mu^+\mu^-) + \Gamma(\bar{B}_s^0(t) \to \mu^+\mu^-) \right]$$

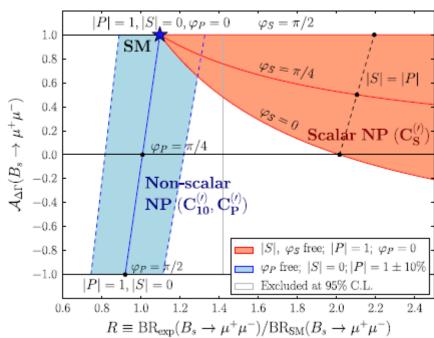
 NP effect shows up in asymmetry → $A_{\Lambda\Gamma}$ can be anything between -1 to +1

$$A_{\Delta\Gamma}^{\ell^+\ell^-} = \frac{\Gamma_{B_{s,H} \to \ell^+\ell^-} - \Gamma_{B_{s,L} \to \ell^+\ell^-}}{\Gamma_{B_{s,H} \to \ell^+\ell^-} + \Gamma_{B_{s,L} \to \ell^+\ell^-}} \stackrel{SM}{=} 1$$

Effective lifetime

• Accurate measurement of τ potentially indicate nature of new physics, if any.

$$\tau_{\ell^+\ell^-} = \frac{\tau_{B_s}}{1 - y_s^2} \left[\frac{1 + 2A_{\Delta\Gamma}^{\ell^+\ell^-} y_s + y_s^2}{1 + A_{\Delta\Gamma}^{\ell^+\ell^-} y_s} \right]$$
$$y_s \equiv \tau_{B_s} \Delta\Gamma/2 = 0.062 \pm 0.006$$

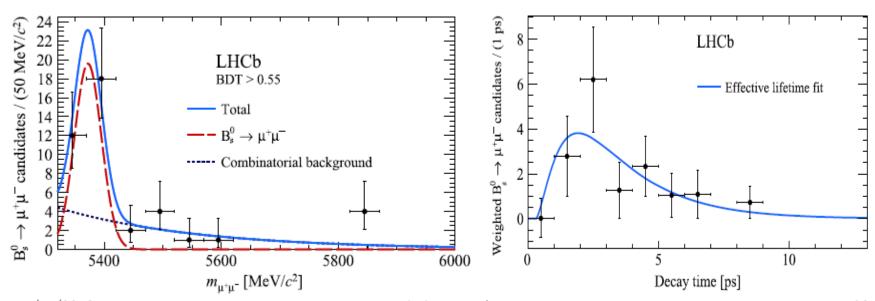

LHCb measurement:

$$\tau(B_s^0 \to \mu^+ \mu^-) = 2.04 \pm 0.44 \pm 0.05 \text{ ps}$$

Phys. Rev. lett 118 (2017) 191801

Compare with SM: 1.510 ± 0.005 ps Consistent with $A_{\Lambda\Gamma}$ =1(-1) at $1.0(1.4)\sigma$ level

Bruyn et. al. Phys. Rev. lett 109(2015) 041801

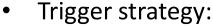

Effect of NP on Asymmetry is orthogonal to BR

• 5% precision on τ can be achieved with data corr integrated luminosity of \sim 50 /fb

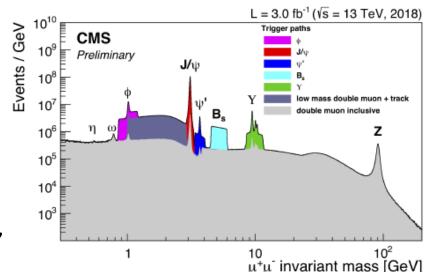
LHCb: Measurement of effective lifetime

Fit performed in 2 steps:

- PRL 118 (2017) 191801
- i) To dimuon invariant mass distribution in range [5320,6000] MeV.
 - \rightarrow exclude $B_d \rightarrow \mu^+\mu^-$ region.
 - → Data is background-subtracted by using event weights in *sPlot* technique
- ii) To weighted decay time distribution
 - \rightarrow decay time acceptance fn. validated with B⁰ \rightarrow K⁺ π ⁻
- Unlike BF measurement, use single BDT cut and looser PID
- Acceptance function modeled on simulated events of $B_s \rightarrow \mu^+\mu^-$

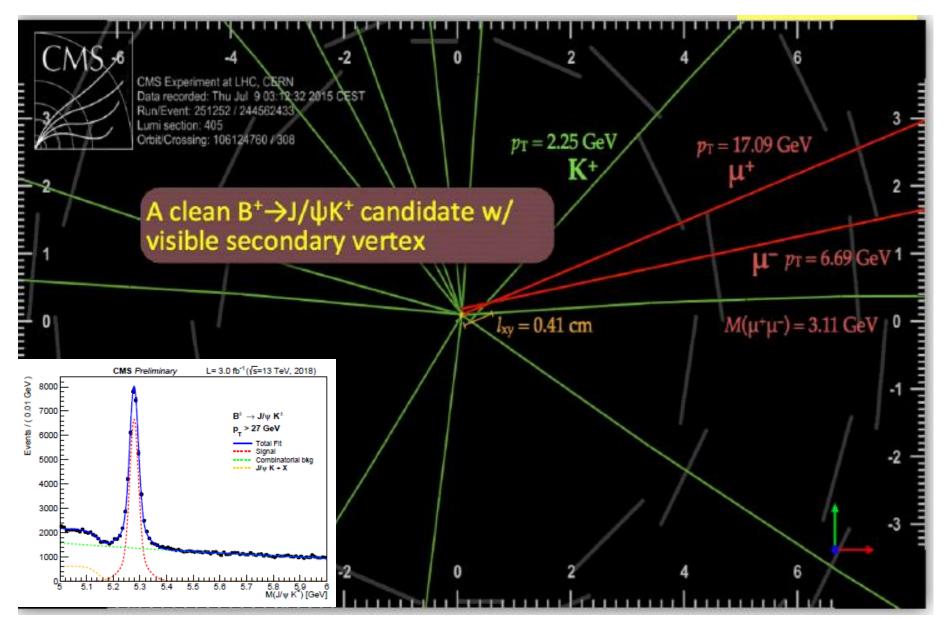

CMS analysis with Run2 data

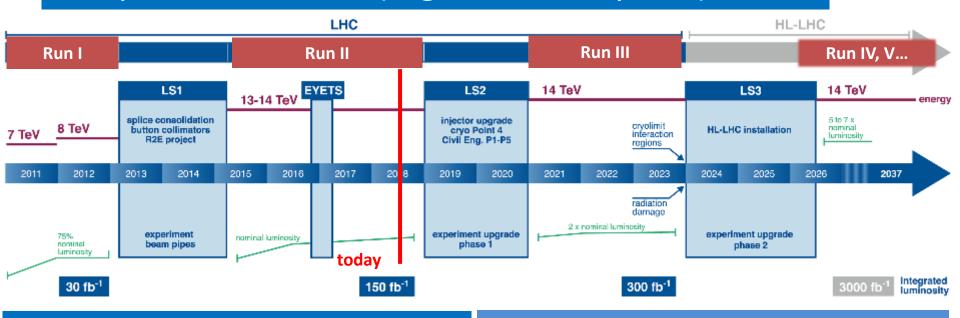
CMS-DP-2018-036


New 4-layer pixel detector since 2017

 More than 4 times larger data volume already on tape

Run1: 25/fb, 2016: 35/fb, 2017: 40/fb


- → dimuon invariant mass around resonances, dimuon p_T, prompt & displaced vertices
- → Increased instantaneous luminosity → more stringent criteria


- Analysis much improved → no more a search BUT precise measurement
- → Dedicated trigger in central region~ 15% bandwidth for flavour physics
- → Improved muon identification
- → In-situ dimuon trigger and reconstruction bias estimate
- → Improved pile-up studies
- identification of primary vertex independent of pile up

More discussion In talk by D.Sahoo

 $B_s \rightarrow \mu^+\mu^-$ result in near future

LHC plan and HL-LHC (High Luminosity LHC)

The HL-LHC Project: $300 \text{ fb}^{-1} \rightarrow 3000 \text{ fb}^{-1}$

Major intervention on more than 1.2 km of the LHC

#enabling a total integrated luminosity of 3000 to 6000 fb⁻¹

#implying an integrated luminosity of 250-300 fb⁻¹ per year,

#design for $\mu \sim 140$ (~ 200) \rightarrow peak luminosity of 5 (7.5) 10^{34} cm⁻² s⁻¹

=> Ten times the luminosity reach of first 10 years of LHC operation

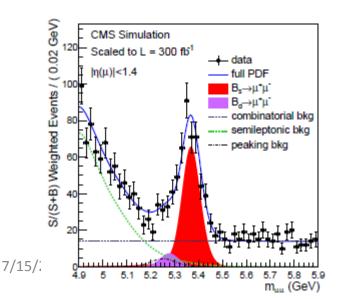
CMS projection for future

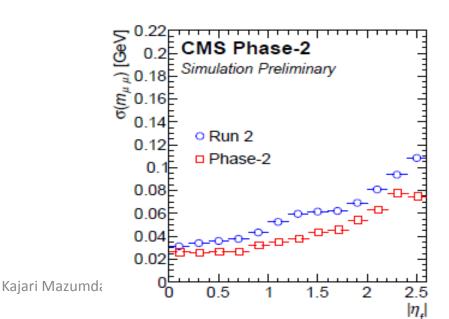
FTR-13-022

TDR-15-002

Considered simple scaling of current analysis

TDR-17-001


24


→ NOT including as yet better features of detector and methodology of future.

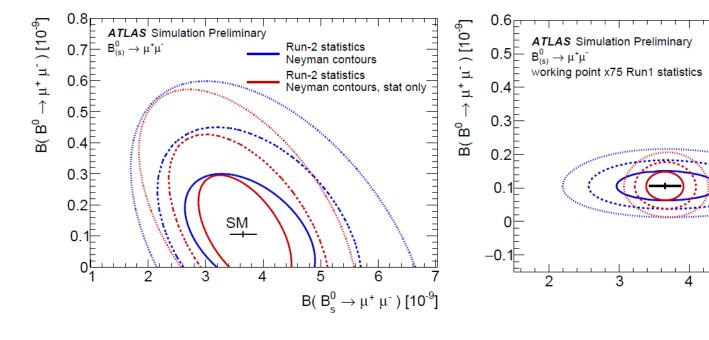
L (fb ⁻¹)	No. of B _s	No. of B ⁰	$\delta \mathcal{B}/\mathcal{B}(\mathrm{B_s}^0 o \mu^+\mu^-)$	$\delta \mathcal{B}/\mathcal{B}(\mathrm{B}^0 \to \mu^+\mu^-)$	B ⁰ sign.	$\delta \frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B_s^0 \to \mu^+ \mu)}$
20	16.5	2.0	35%	>100%	$0.0-1.5 \sigma$	>100%
100	144	18	15%	66%	0.5–2.4 σ	71%
300	433	54	12%	45%	1.3–3.3 σ	47%
3000	2096	256	12%	18%	5.4–7.6 σ	21%

Crucial improvement in trigger capability for Phase-2 upgraded detector

- \rightarrow Tracking information in level1 trigger (decision in 12 μ s)
- \rightarrow P_T resolution of dimuon system

ATLAS Projection for the future

Extrapolated from Run1 measurement


	$\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$		$\mathcal{B}(B^0 \to \mu^+ \mu^-)$	
	stat [10 ⁻¹⁰]	$stat + syst [10^{-10}]$	stat [10 ⁻¹⁰]	$stat + syst [10^{-10}]$
Run 2	7.0	8.3	1.42	1.43
HL-LHC: Conservative	3.2	5.5	0.53	0.54
HL-LHC: Intermediate	1.9	4.7	0.30	0.31
HL-LHC: High-yield	1.8	4.6	0.27	0.28

stat + syst

stat only

SM prediction

B($B_s^0 \rightarrow \mu^{\scriptscriptstyle +} \, \mu^{\scriptscriptstyle -}$) [10 $^{\scriptscriptstyle -9}$]

Conclusion

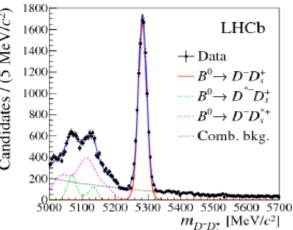
- LHC experiments have been painstakingly improving their measurements of the process $B_s \to \mu^+ \mu^-$.
- Results are in agreement with Standard Model.
 But beyond SM physics may be lurking behind!
 → need precise measurement of related observables, like, effective lifetime.
- LHCb has combined Run1 and part of the Run2 data to achieve 7σ observation of $B_s \rightarrow \mu^+\mu^-$ by a single experiment.
- LHCb has also measure effective lifetime which agrees with Standard Model.
- No new result, based on Run2 data (13 TeV) from ATLAS and CMS as yet.
- With analysis of more data on-going, expect exciting results in near future from LHC experiments.
- Coming decade will see improved detectors and hence higher potential.

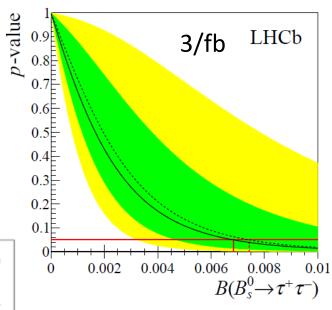
BACKUP

$$B_s \rightarrow \tau^+ \tau^-$$

- Measurement has become more important in view of possible violation of lepton flavour universality in recent measurement of R(D*) etc..
- Extremely challenging due to presence of vs in the final state
- LHCb analysis cannot distinguish between B_d & B_s
- Control channel: $B^0 \rightarrow D^+(K^-\pi^+\pi^+) D_s^-(K^+K^-\pi^-)$

$$\mathcal{B}(B_s^0 \to \tau^+ \tau^-) < 5.7 (7.4) \times 10^{-3} \text{ at } 90 (95)\% \text{ CL}$$

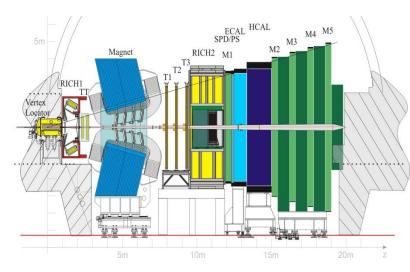

- Currently the best limit
- Factor of 2.6 improvement compared to Babar


$$\mathcal{B}(B^0 \to \tau^+ \tau^-)_{\text{SM}} = (2.22 \pm 0.19) \times 10^{-8}$$

 $\mathcal{B}(B_s^0 \to \tau^+ \tau^-)_{\text{SM}} = (7.73 \pm 0.49) \times 10^{-7}$

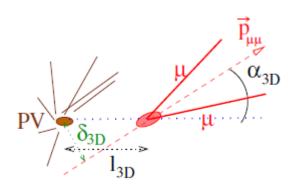
SM prediction:

Bobeth et.al PRL 112, 101801


Phys. Rev. lett 118 (2017) 191801

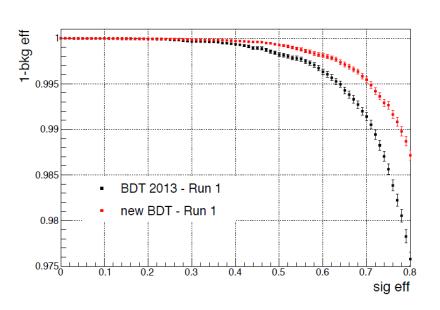
LHCb detector

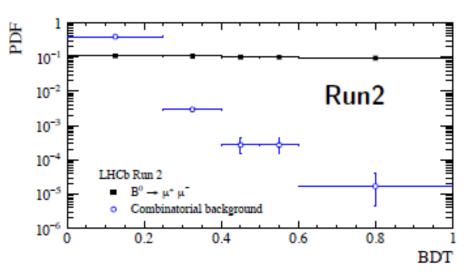
- Single-arm forward spectrometer
- $\sim 4\%$ of solid angle coverage (2 < η < 5)
- accepts ~ 30% of b-hadrons
- bb pairs in 1 /fb data: $\sim 1.8*10^{11}$


- ✓ Excellent tracking, particle identification, efficient trigger
- ✓ Two RICH detectors for particle identification
- ✓ Hadronic & electromagnetic calorimeters
- ✓ Precision silicon vertex locator (VELO)

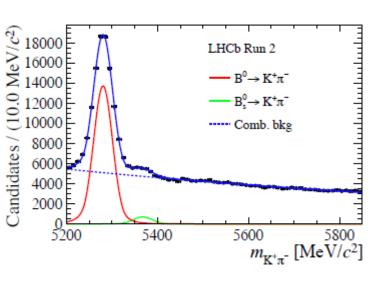
Designed to run at low instantaneous luminosity (2x10³² cm⁻² s⁻¹)

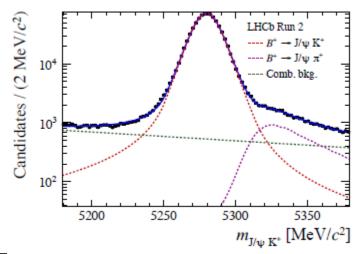
→ Maximum luminosity levelled to 4x10³² cm⁻² s⁻¹


$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \frac{N_{B_s^0 \to \mu^+ \mu^-}}{N_{\text{norm.}}} \times \frac{f_d}{f_s} \times \frac{\varepsilon_{\text{norm.}}}{\varepsilon_{B_s^0 \to \mu^+ \mu^-}} \times \mathcal{B}_{\text{norm.}} = \alpha_{\text{norm.}} \times N_{B_s^0 \to \mu^+ \mu^-}$$


$$\begin{split} \mathcal{B}(B_s^0 \to \mu^+ \mu^-) &= \frac{n_{B_s^0}^{\text{obs}}}{\varepsilon_{B_s^0} N_{B_s^0}} = \frac{n_{B_s^0}^{\text{obs}}}{\varepsilon_{B_s^0} \mathcal{L} \, \sigma(pp \to B_s^0)} \\ &= \frac{n_{B_s^0}^{\text{obs}}}{N(B^+ \to J/\psi \, K^+)} \frac{A_{B^+}}{A_{B_s^0}} \frac{\varepsilon_{B^+}^{ana}}{\varepsilon_{B_s^0}^{ana}} \frac{\varepsilon_{B^+}^{\mu}}{\varepsilon_{B_s^0}^{ana}} \frac{\varepsilon_{B^+}^{trig}}{\varepsilon_{B_s^0}^{trig}} \frac{f_u}{f_s} \, \mathcal{B}(B^+ \to J/\psi \, [\mu^+ \mu^-] K) \end{split}$$

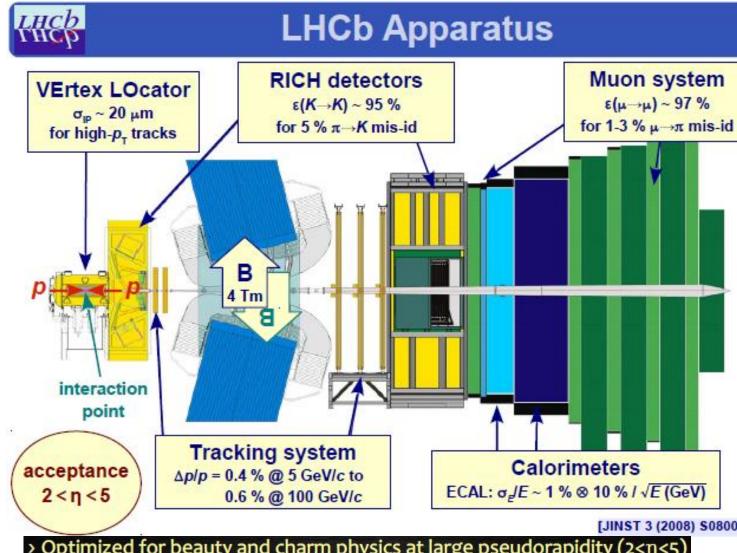
Improvements in LHCb: Run2 wrt Run1


BDT-based isolation



- Signal BDT shape from B \rightarrow K π ,
- Background: di-muon mass sidebands

Aspects of LHCb analysis



• Background: Combinatorial + Exclusive \rightarrow Decays with one or 2 hadrons (identified as μ): $B_s \rightarrow h^+ h^-$, $B^0_{d/s} \rightarrow \pi^-/K^-\mu^+ \nu$, $\Lambda^0_b \rightarrow p \mu^+ \nu^+$, $B^+c \rightarrow J/\Psi(\rightarrow \mu\mu^-)\mu^+ \nu$, $B^+ \rightarrow \pi^-\mu^+ \nu$ Negligible: $B^0s \rightarrow \mu^-\mu^+ \gamma$, $B^0s \rightarrow \mu^-\mu^+ \nu\nu$

$$\mathrm{BR} = \mathrm{BR}_{\mathrm{cal}} \times \frac{\epsilon_{norm}^{Acc}}{\epsilon_{sig}^{Acc}} \times \frac{\epsilon_{norm}^{RecSel|Acc}}{\epsilon_{sig}^{RecSel|Acc}} \times \frac{\epsilon_{norm}^{Trig|RecSel}}{\epsilon_{sig}^{Trig|RecSel}} \times \frac{f_{\mathrm{cal}}}{f_{d(s)}} \times \frac{N_{B_{(s)}^{0} \to \mu^{+}\mu^{-}}}{N_{\mathrm{cal}}} = \alpha_{(s)} \times N_{B_{(s)}^{0} \to \mu^{+}\mu^{-}}$$

LHCb-CONF-2013-011

[JINST 3 (2008) S08005]

```
    Optimized for beauty and charm physics at large pseudorapidity (2<η<5)</li>
```

>95% (60-70%) efficient for muons (electrons) » Trigger:

 σ_p/p 0.4%–0.6% (p from 5 to 100 GeV), σ_{IP} < 20 μm » Tracking:

» Calorimeter: σ_F/E ~ 10% / \sqrt{E} ⊕ 1%

» PID: ~97% µ,e ID for 1–3% $\pi\rightarrow\mu$,e misID

Experimental issues in general

- ATLAS, CMS and LHCb all have far better measurement capability for measuring $\boldsymbol{\mu}$ than e
- Trigger, reconstruction, selection, particle identification are more difficult for e (trigger eff. For CMS: 50 -80 %)
- Mass resolution is affected by bremsstrahlung for e
- → Need energy recovery
- → Mass shape modeled according to the number of brem-photon recovered
- Blind analysis → optimized selection, muon misidentification probability, resilience with event pileup.
 - → categorized multivariate analysis essential

No new result, based on Run2 data (13 TeV) from ATLAS and CMS as yet.